Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Цитохромы

.docx
Скачиваний:
71
Добавлен:
09.04.2015
Размер:
95.22 Кб
Скачать

Цитохромы, сложные железосодержащие белки, простетическая (небелковая) группа которых представлена гемом (гемопротеиды). Впервые описаны в 1886 Мак-Манном (Шотландия) под название гистогематины, однако роль их в живых клетках оставалась невыясненной до 1925, когда Ц. были вновь открыты Д. Кейлином. Ц. широко распространены в растительных и животных клетках и микроорганизмах (дрожжах и некоторых факультативных анаэробах) и связаны с мембранами митохондрий, эндоплазматического ретикулума, хлоропластов и хроматофоров. Они играют важную роль во многих процессах, протекающих в живых организмах, — клеточном дыхании, фотосинтезе, микросомальном окислении. Все Ц. способны отдавать и принимать электрон путём обратимого изменения валентности атомов железа, входящих в состав гема. Объединённые в короткие или длинные цепи (в зависимости от величины потенциала конечного акцептора электронов) Ц. переносят электроны от дегидрогеназ к конечным акцепторам. Передача электронов от Ц. к Ц. позволяет клетке использовать энергию химических соединений или солнечного света в энергетических или пластических целях. Так, в составе цепи дыхательных ферментов митохондрий Ц. при участии цитохромоксидазы осуществляют конечные этапы окисления субстратов кислородом. Освобождающаяся при этом энергия утилизируется для образования аденозинтрифосфорной кислоты (АТФ) или в виде мембранного потенциала; Ц. эндоплазматического ретикулума составляют короткие нефосфорилирующие цепи, являющиеся частью системы, осуществляющей обмен и обезвреживание ароматических соединений (см. Окисление биологическое, Окислительное фосфорилирование).

По спектральным характеристикам, химическому строению боковых цепей гема и природе связи гема с белковой молекулой Ц. подразделяют на 4 типа: а, b, с, d, каждый из которых, в свою очередь, содержит несколько видов Ц. Те Ц., индивидуальность которых установлена, обозначают курсивной строчной буквой лат. алфавита, указывающей на принадлежность к определённой группе, и подстрочным числовым индексом (например, цитохром c1). В восстановленном состоянии Ц. дают чёткий спектр с тремя выраженными полосами поглощения, характерными для каждого типа Ц. и позволяющими обнаружить Ц. спектрофотометрическими методами. Известно около 30 Ц., но только часть из них получена в виде индивидуальных белков. Получение высокоочищенных Ц. затруднено тем, что они прочно связаны с мембранами и отделяются только при обработке поверхностно-активными веществами или протеолитическими ферментами. Исключение составляют цитохромы b3 и с, легко экстрагируемые солевыми растворами. Сравнение последовательности аминокислот в белковой части молекул цитохрома с, полученного из различных организмов, показало, что последовательность 35 и 11 аминокислотных остатков в разных участках цепи остаётся неизменной. Количество замен в др. участках белковой цепи этого Ц., полученного из организмов различных видов, находится в прямой зависимости от филогенетических различий между этими видами (молекулы цитохромов с лошади и дрожжей различаются по 48 аминокислотным остаткам, утки и курицы — только по двум; у свиньи, коровы и овцы они идентичны).

Лит.: Арчаков А. И., Микросомальное окисление, М., 1975; Ленинджер А., Биохимия. Молекулярные основы структуры и функций клетки, пер. с англ., М., 1976.

В. В. Зуевский.

Цитохромы

сложные белки — переносчики электронов, простетич. группа к-рых представлена гемом. Содержатся в клетках всех организмов. Локализованы в мембранах митохондрий, хлоропластов, хроматофоров, эндоплазматич. ретикулума и в др. мембранных структурах, участвуют во всех осн. группах окислит.-восстановит, процессов, протекающих в живых клетках,— дыхании, фотосинтезе, микросомальном окислении. Как правило, образуют т. н. цепи, по к-рым электроны последовательно переносятся от донора к конечному акцептору. При функционировании Ц. и переносе восстановит, эквивалентов обратимо изменяется уровень окисления простетич. группы (Fe(II) ? Fe(III)). Электрон-транспортные цепи в хлоропластах, митохондриях и прокариотич. микроорганизмах участвуют в обеспечении клетки энергией за счёт энергии света (при фотосинтезе) или окисления субстрата (при дыхании). В мембранах эндоплазматич. ретикулума электрон-транспортные цепи обычно короче и выполняют функцию обезвреживания ароматич. соединений в ходе микросомального окисления. Известно св. 30 Ц. (часть Ц. получена в виде индивидуальных белков), объединённых в 4 осн. группы: Ц. а — простетич. группой служит гем с формильной боковой цепью; Ц. в — простетич. группа протогем или родственный ему гем, не имеющий формильной группы; Ц. с — простетич. группы ковалентно присоединены к белку; Ц. d — простетич. группой служит хелат железа, в к-ром степень сопряжённости двойных связей меньше, чем в порфирине. Помимо Ц. указанных 4 групп, имеются Ц. Р-450 и h. Ряд Ц.— внутренние, или интегральные, мембранные белки, что затрудняет их выделение в высокоочищенном виде и изучение их первичной структуры. Другие Ц.— внеш. мембранные белки (напр., Ц. с) — подробно охарактеризованы для мн. объектов. Сопоставление аминокислотных последовательностей однотипных Ц.. выделенных из разл. организмов, с помощью спец. программ на ЭВМ позволяет количественно охарактеризовать нек-рые эволюционные явления: темпы мутационного процесса, филогенетич. близость, степень эволюционной изменчивости отд. участков белковой молекулы в связи с их функц. нагрузкой и др. В эволюции биосферы появление Ц. резко усилило геохимич. активность живого вещества. С одной стороны, Ц. увеличили скорость и масштабы образования свободного кислорода при фотосинтезе, с другой — размах биол. окисления восстановленных соединений углерода и неорганич. веществ. Они позволили сформировать эффективную систему энергообеспечения клетки, что способствовало появлению эукариотного типа организации клетки и затем — выходу жизни на сушу

Цитохромы (синоним: миогематины, гистогематины) — гемопротеиды, биологическая функция которых заключается в переносе электронов и осуществляется (в процессе тканевого дыхания) путем обратимого изменения валентности атомов железа, входящих в состав гема (см. Гемоглобин). В зависимости от конфигурации простетической группы цитохромы делятся на четыре типа (каждый из которых в свою очередь содержит несколько видов цитохромов): цитохромы a, b, c, d. Соответствующие им простетические группы: железо-формил-порфирин (гем А или родственный ему гем с формильной боковой цепью); протогем (железо-протопорфирин); замещенный мезогем; железо-дигидропорфирин. В восстановленном состоянии цитохромы дают четкий спектр с тремя полосами поглощения (а, р и у), характерными для каждого типа цитохромов и позволяющими обнаружить цитохромы спектрофотометрическими методами. Цитохромы найдены во всех животных и растительных клетках, а также в дрожжах и в некоторых факультативных анаэробах. Роль многих цитохромов в организме еще неизвестна, хотя некоторым приписывают высокоспециализированные функции. Важнейшей функцией цитохромов нужно считать их связь с нормальной окислительной цепью в процессе дыхания большинства тканей. Общепризнанным в настоящее время считается следующее расположение цитохромов в цепи переносчиков электронов: b — c1 — с — а — а3 — О2. У бактерий часто отсутствуют отдельные компоненты полной цитохромной системы, присущей животным и растительным тканям; в некоторых случаях вместо них обнаружены другие цитохромы, отсутствующие в животном и растительном организмах. Основные компоненты цитохромной системы локализованы в митохондриях. В микросомах животных клеток обнаружен цитохром b5; в растительных микросомах — b3; в хлоропластах растений — b6. Цитохромы плохо растворимы в воде; их растворимость повышается при обработке исходного материала, содержащего цитохромы, поверхностно-активными веществами. Имеющиеся в настоящее время данные указывают на то, что основная часть энергии биологического окисления освобождается в результате реакций, катализируемых цитохромной системой. Характеристика некоторых цитохромов. Цитохром c получен в кристаллическом виде. Молекулярный вес — 12 000. В организме находится как в свободном, водорастворимом, состоянии, так и в связанном с клеточными частицами. Окисленный цитохром с восстанавливается химическими реагентами, например гидросульфитом и др. В тканях организма восстановление может осуществляться за счет ферментов, называемых цитохромредуктазами. Относятся они к флавопротеидам. Различают два типа: окисляющие НАД восстановленный (восстановленный НАД-цитохром-С-редуктазы) и НАДФ восстановленный (восстановленный НАДФ-цитохром-С-редуктазы). Цитохром a3 (цитохромоксидаза; цитохром-с : O2-оксидоредуктаза; Варбурга дыхательный фермент) — фермент, переносящий электроны от цитохрома c на O2. Содержит медь. Вопрос о самостоятельном существовании цитохромов a и a3 является спорным. Предполагается даже, что оба соединения представляют собой один и тот же белок. Недавно получены данные, указывающие на то, что цитохромоксидаза, возможно, состоит из шести единиц, две из которых эквивалентны цитохрому a3, а четыре — цитохрому a. В гистохимии цитохромоксидаза определяется по нади-реакции: α-нафтол + диметил-α-фенилендиамин + 4 цитохром c спонтанно → индофеноловый синий + 4 цитохром с (восстановленный) цитохромоксидаза + кислород → цитохром c + Н2O. Результатом является возникновение синего или сине-фиолетового окрашивания. См. также Окисление биологическое.

ЦИТОХРОМ с-ОКСИДАЗА

Яндекс.Директ Все объявленияЗимняя одежда KLINGEL Утепляйтесь вместе с KLiNGEL. Каталог теплой одежды из Германии. klingel.ru

ЦИТОХРОМ с-ОКСИДАЗА(цитохромоксидаза), фермент класса оксидоредуктаз; катализирует конечный этап переноса электронов на кислород в процессе окислительного фосфорилирования:

Окисление цитохрома ссопровождается появлением мембранного протонного потенциала, к-рый используется клеткой для обеспечения всех видов работ, выполняемых биомембранами, и в первую очередь для синтеза АТФ. Фермент широко распространен как среди эукариот, так и среди прокариот. У эукариот фермент расположен во внутр. мембране митохондрий, у прокариот - в цитоплазматич. мембране.Цитохром c-оксидаза- сложный белок, состоящий из неск. полипептидных цепей, связанных с4 окислит.-восстановит. центрами, 2 ионами Си2+ и 2 гемами а(см. ф-лу).

Мол. масса фермента (напр., цитохром c-оксидаза из сердца быка) составляет от 180 до 200 тыс. Цитохром c-оксидаза обычно существует в димерной форме и прочно ассоциирована с молекулами фосфолипидов мембран и ПАВ, использованных при ее выделении. Цитохром c-оксидаза имеет характерный спектр поглощения;нм (-10-3):восстановленная форма 443 (107), 603 (23,2); окисленная форма -421 (82), 598 (11). Железо гемов может находиться в окисленном или восстановленном состоянии и образует координац. связи с одним либо двумя аминокислотными остатками белковой цепи. В зависимости от белкового окружения гемы различаются по св-вам: один (гем а3),высокоспиновый, после восстановления реагирует с О2 или СО,CN. Другой (гем а), низкоспиновый, в такие р-ции не вступает. Ионымеди в цитохром c-оксидазе также неравноценны. Один из них, СuА, дает сигнал в спектре ЭПР и взаимод. с гемом a, другой, Сuв, не дает сигналов, взаимод. с гемом а3. Число полипептидных цепей в ферменте зависит от эволюционной ступени, занимаемой организмом - источникомцитохром c-оксидазы. Фермент прокариот включает 2-3 белковые цепи, эукариоты содержат цитохром c-оксидазы из 5 (соя, батат) или 7-8 субъединиц (дрожжи). У млекопитающих число субъединицфермента возрастает до 12-13. Все полипептиды в цитохром c-оксидазах различны по структуре и имеют мол. м. от 5 до 57 тыс. Три наиб. крупные субъединицы (I-III; рис.).Цитохром c-оксидазы эукариот кодируются в митохондриальном геноме и синтезируются на митохондриальных рибосомах. Эти субъединицы играют главную роль в выполнении биол. ф-цийцитохром c-оксидаз. Они связаны со всеми окислит.-восстановит. центрами и имеют участки узнавания цитохрома с. Остальные субъединицы цитохром c-оксидазы кодируются в ядерномгеноме и синтезируются в цитоплазме. Ф-ции этих полипептидов, вероятно,связаны с регуляцией активности цитохром c-оксидазы и могут отражать также тканевую специфичностьфермента. Первичная структура полипептидов наиб. изученных ферментов (бык,крыса, Saccharomyces cerevisiae)полностью известна.

Модель структурной н функциональной организацииполипептидов в цитохромоксидазе из печени крысы. Римскими цифрами и буквами обозначены отдельные субъединицы фермента. Цитохром c-оксидаза- мембранный фермент. с-Домен ферментавыступает из плоскости мембраны с цитоплазматич. стороны на 0,50-0,55 нм;с матричной стороны выступают на 0,15-0,25 нм два домена, к-рые состоят из спирализованных участков полипептидных цепей и включают 8-12 и 5-8 спиралей,соотв. Цитохром с взаимод. с цитохром c-оксидазой, связываясь с субъединицей П. Цепочка, по к-рой электроны передаются к кислороду, м.б. представлена схемой: Цитохром сСuАГемаГема3-СuВ + О2. Переносэлектрона сопровождается трансмембранным переносом двух протонов из матрикса в цитозольное пространство и появлением.Такой механизм позволяет отнести цитохром c-оксидазу к мембранным протонным насосам. Для выделения цитохром c-оксидазы из митохондрий или субмитохондриальных частиц используют ПАВ, чаще всего холат или дезоксихолат натрия. Обычно чистоту цитохром c-оксидазы выражают через отношение содержания гема а к кол-ву белка.Для препаратов фермента, выделенных разл. способами, этот показатель составляет8-14 нмоль/мг. Определить точное значение этой величины пока невозможно из-за отсутствия надежных данных о числе субъединиц, действительно необходимых для функционирования фермента. Важная характеристика цитохром c-оксидазы - ферментативнаяактивность, к-рая определяется спектрофотометрически (по уменьшению поглощения ферроцитохрома с) либо полярографически (по изменению концентрацииО2 в среде); она может достигать 400 моль цитохрома с намоль цитохром c-оксидазы в секунду. Активность фермента сильно зависит от кол-ва липидовв препарате. При тщательном удалении липидов ферментативная активностьрезко снижается, но после добавления липидов частично восстанавливается. Цитохром c-оксидаза необходима для обеспечения жизнедеятельности всех эукариотич. и нек-рых прокариотич. клеток. Нарушение биосинтеза цитохром c-оксидазы в клетках человека приводит к их гибели. Структурные и функциональные измененияфермента являются причиной серьезных заболеваний.