Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры блеать.docx
Скачиваний:
11
Добавлен:
30.03.2015
Размер:
39.78 Кб
Скачать

5.4. Коррозионно-стойкие стали

Коррозия это термин, используемый для обозначения широкого класса видов нежелательного повреждения металла в результате его химического или электрохимического взаимодействия с окружающей средой.

Для изделий, работающих в высокоагрессивных средах при высоких температурах, широко используют сплавы на основе никеля (Н70М28, Н70М28Ф, Х15Н55М16В) с высоким содержанием молибдена. Никелевые сплавы с молибденом обладают высокой стойкостью в горячих растворах серной и соляной кислот.

5. Жаропрочные стали и сплавы

Жаропрочные стали и сплавы применяют для многих деталей котлов, газовых турбин, реактивных двигателей, ракет, атомных устройств и т. д., работающих при высоких температурах.

Для более ответственных деталей, работающих при температурах до 585 ºС и давлении до 25,5 МПа, применяют низкоуглеродистые (0,08–0,2 % С) низколегированные стали (12Х1МФ, 15Х1М1Ф, 2Х2МФСР), имеющие в зависимости от режима термообработки (закалка или нормализация, высокий отпуск) ферритоперлитную, перлитную или бейнитную структуру. Основными легирующими элементами этих сталей являются: хром, вольфрам, молибден, ванадий, ниобий. Содержание каждого из них, кроме хрома, не превышает 1 %.

Для различных деталей энергетического машиностроения, работающих длительное время при температурах 600–650 ºС, применяют хромистые стали мартенситного и мартенситоферритного классов (12Х2НВФА, 15Х11МФ, 18Х12ВМБФР), содержащие от 5 до 13 % Cr, 0,08–0,22 % С и дополнительно легированные карбидообразующими элементами (Mo, W, Nb, V). Эти стали наряду с высокими значениями длительной прочности обладают высокой жаростойкостью. Повышенная жаропрочность достигается за счет упрочнения твердого раствора, образования карбидов и интерметаллидных фаз.

В аустенитных сталях с карбидным упрочнением (40Х12Н8Г8МФБ, 45Х14Н14В2М) высокая жаропрочность достигается введением 0,3–0,5 % С и карбидообразующих элементов (Mo, W, V). Структура стали – аустенит и карбиды типа Ме23С6 и МеС. Стали используются для изготовления клапанов авиационных двигателей и двигателей газотурбинных установок. Для повышения жаростойкости стали подвергают алитированию.

Стали с интерметаллидным упрочнением (12Х18Н10Т, 10Х12Н22Т3МР, 10ХН35ВТЮ) содержат небольшое количество углерода и дополнительно легированы титаном, алюминием, молибденом и бором. Титан и алюминий упрочняют структуру соединениями Ni3Ti, Ni3TiAl. Бор упрочняет границы зерен, молибден легирует твердый раствор, повышая энергию межатомной связи. Стали используют для изготовления камер сгорания, дисков и лопаток турбин.

Жаростойкость – способность металла сопротивляться окислению в газовой среде или в других окислительных средах при повышенных температурах. Жаропрочные сплавы в принципе должны быть и жаростойкими, иначе они быстро выходят из строя из-за быстрого окисления. Однако жаростойкие сплавы не всегда бывают жаропрочными Жаростойкость стали достигается введением хрома, никеля, алюминия или кремния, образующих в процессе нагрева защитные пленки оксидов (Cr,Fe)2O3, (Al,Fe)2О3. Введение в сталь 5–8 % хрома повышает жаростойкость до 700–750 °С, до 17 % – до 1000 °С, 25 % – до 1100 °С. Дополнительное легирование к 25 % хрома 5 % алюминия повышает жаростойкость до 1300 °С.

Жаростойкие стали, имеющие повышенное содержание углерода (до 0,5–0,8 %) и легированные совместно хромом (6–14 %) и кремнием (1–3 %) (15Х6СЮ, 40Х10С2М), называются сильхромами.

К инструментальным относят стали и сплавы, применяемые для обработки материалов резанием и давлением и обладающие определенными свойствами (твердостью, теплостойкостъю (красностойкостью), износостойкостью, прокаливаемостью и др.) в условиях эксплуатации.

Углеродистые инструментальные стали (У7–У13, У7А–У13А) являются наиболее дешевыми.

Быстрорежущие стали обозначаются первой буквой Р (от слова «рапид» – скорость), следующая цифра указывает на содержание вольфрама, причем буква «В» пропускается (Р18). Содержание молибдена, который часто добавляют из экономии вольфрама, ванадия, кобальта указывается соответственно после букв М, Ф и К: Р6М5, Р6М5Ф3, Р6М5К8, Р12МЗФ2К5.

Путем корректировки содержания углерода и легирующих элементов была создана группа кобальтосодержащих сталей, обладающих повышенной теплостойкостью и называемых «сверхбыстрорежущими»: Р12МЗФ2К5, Р12МЗФ2К8, Р12МЗФЗК10, Р9МЗК6С, 10Р6М5К5 и др.).

Штамповые стали, применяемые для изготовления инструмента, предназначенного для изменения формы материала деформированием без снятия стружки, по условиям работы делят на стали для холодного и горячего деформирования.

Штамповые стали легируют хромом (от 0,5 до 13 %), вольфрамом (от 2 до 6 %), молибденом (от 0,6 до 1,8 %), ванадием (до 4 %), кремнием (от 3 до 5 %), никелем (0,5–1 %), марганцем (1,5–2 %), кобальтом (до 0,8 %).

Штамповые стали для холодного деформирования должны иметь высокую твердость, износостойкость, повышенную вязкость (особенно для инструментов, работающих при динамических нагрузках) и теплостойкость. Для обеспечения заданных свойств используются нетеплостойкие углеродистые и легированные стали, или полутеплостойкие высокохромистые (3–12 % Cr) с 0,6–1,5 % С, дополнительно легированные ванадием, молибденом, вольфрамом и другими элементами.

Высокопрочные стали с повышенной ударной вязкостью имеют высокую прочность и пониженную теплостойкость и предназначены для изготовления инструмента, работающего при динамическом нагружении. Упрочнение сталей осуществляют закалкой и низким отпуском (7ХГ2ВМ, 7ХГНМ) или путем дисперсионного твердения (6Х6ВЗМС, 6Х4М2ФС). Важным для этих сталей является минимальное изменение объема при закалке, что достигается в низкоотпущенных сталях сохранением значительных количеств остаточного аустенита (18–20 %).

Стали типа 6Х6ВЗМФС и 6Х4М2ФС применяют для инструментов, работающих при значительных динамических нагрузках и давлениях до 1500 МПа (высадочные пуансоны и матрицы, гильотинные ножницы и др.), стали типа 7ХГ2ВМ и 7ХГНМ – для инструмента прецизионной вырубки, пробивки и т. п.

Наиболее высокое сочетание прочности и пластичности у стали 5Х2МНФ. Она имеет наиболее высокое сопротивление термомеханической усталости.

Для небольших молотовых штампов применяют сталь 5ХНВ или 5ХНМ. При ужесточении требований по теплостойкости используют стали 4ХСМФ и ЗХ2МНФ. Для крупногабаритных тяжело нагруженных молотовых штампов применяют сталь 5Х2МНФ. Стойкость штампов из стали 5Х2МНФ примерно в 1,5–2,0 раза выше, чем из стали 5ХНМ.

Стали повышенной теплостойкости и вязкости в отличие от сталей умеренной теплостойкости содержат повышенное количество карбидообразующих элементов при пониженном содержании углерода: 0,3–0,4 %. Стали этой группы наиболее широко применяют для изготовления инструментов горячего деформирования и форм литья под давлением. В отожженном состоянии в структуре сталей имеются карбиды типа Ме23С6, Ме6С, МеС. Стали этой группы 4Х5МФС, ЗХЗМЗФ, 4Х4ВМФС и др. характеризуются более высокой теплостойкостью и прочностью при рабочих температурах по сравнению со сталями умеренной теплостойкости 5ХМН и 5ХМВ.

Стали типа 4Х5МФС, 4Х5В2ФС, 4Х5МФ1С применяют для инструментов, работающих в условиях длительных теплосмен до температур 600–630 °С (например, для горизонтальных прессов – пресс-штемпели, иглы для прошивки труб и т. д.).

Наиболее теплостойкие стали 4ХЗВМФ и 4Х4ВМФС используют для инструментов, работающих в условиях высоких удельных давлений (800–1500 МПа) и температур 650–660 °С (деформирование коррозионно-стойких и жаропрочных сталей и сплавов).

Стали высокой теплостойкости отличаются более высоким содержанием карбидообразующих элементов: вольфрама, молибдена и ванадия, некоторые из сталей этой группы дополнительно легируют кобальтом в количестве 8–15 %. В зависимости от легирования стали высокой теплостойкости могут иметь карбидное (ЗХ2В8Ф, 4Х2В5МФ, 5ХЗВЗМФС) или смешанное карбидоинтерметаллидное упрочнение (2Х6В8М2К8, ЗХЮВ7М2КЮ). Упрочняющими фазами в сталях этой группы являются карбиды Ме6С и МеС, а при легировании кобальтом – интерметаллиды (Fe, Co)2W, (Fe, Co)7W6.