Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ФОПИ (Чередов)1.doc
Скачиваний:
538
Добавлен:
30.03.2015
Размер:
3.2 Mб
Скачать

2.4.2. Основные параметры акустических волн

Для характеристики акустических волн можно выделить несколько основных параметров, к которым относятся: скорость распространения С, м/c, колебательная скорость частиц средыV, м/c; давление в волне Р, Н/м2; интенсивность волныJ, Вт/м2; частотаf, Гц; длина волны, м.

Скорость распространения упругой волныв среде характеризует скорость распространения определенного состояния среды (например, зоны сжатия), зависит от характеристик этой среды и для плоских продольной, поперечной и поверхностных волн определяется из соотношений [8]

;;, (2.41)

где Сl, Сt иСR – скорости продольной, поперечной и поверхностной волн;Е – модуль Юнга; γ – коэффициент Пуассона (для металлов γ = 0,3); ρ – плотность материала среды.

Скорость распространения зависит от свойств упругой среды. Например, в углеродистой стали (ρ = 7,8.103кг/м3)Сl= 5 850 м/с,Сt= 3 230 м/с, а в меди (ρ = 8,9.103кг/м3)Сl= 4 700 м/с,Сt= 2 260 м/с.

Колебательная скоростьхарактеризует скорость распространения механического движения частиц в процессе их смещения относительно положения равновесия:

. (2.42)

Давление в волнеРопределяется как

, (2.43)

где Z– акустический импеданс среды.

Акустический импеданс– это отношение комплексного звукового давления к объемной колебательной скорости [18]. При распространении акустических волн в протяженных средах используется понятиеудельного акустического импеданса,равного отношению звукового давления к колебательной скорости. Акустический импеданс характеризует среду, в которой распространяется волна, и называетсяволновым сопротивлениемсреды.

Если среда имеет большое значение Z, то она называется «жесткой» (акустически твердой). В таких средах даже при высоких давлениях колебательные скорости малы. Среды, в которых даже при малых давлениях достигаются значительные колебательные скорости и смещения, получили названия «мягких» (податливых).

Интенсивность волны– количество энергии, перенесенное волной за 1 с через поперечное сечение площадью 1 м2, расположенное под углом φ.

Для плоской волны

. (2.44)

Очень часто для оценки интенсивности волн используются не абсолютные величины, а относительные, например отношение величин на входе и выходе системы, причем обычно используется логарифм этого отношения.

2.4.3. Распространение акустических волн в среде

При распространении плоской акустической волны в среде в результате взаимодействия со средой происходит ее затухание, т. е. интенсивность, амплитуда колебаний, давление волны уменьшаются. Затухание определяется физико-механическими свойствами среды, типом волны, геометрическим расхождением лучей и происходит по экспоненциальному закону, например, для амплитуды можно записать

, (2.45)

где х – расстояние, пройденное волной; – коэффициент затухания, м-1,иногда эту единицу записывают непер/м (Нп/м). Часто коэффициент затухания выражают в дБ/м.

Чем больше расстояние, тем сильнее ослабляется акустическая волна. Амплитуда колебаний и звуковое давление ультразвуковой волны снижаются в раз на каждую единицу длины путих, проходимого волной, а интенсивность как энергетическая единица – в раз.

Величина, обратная коэффициенту затухания, показывает, на каком пути амплитуда волны уменьшается в е раз.

Коэффициент затухания складывается из коэффициентов поглощения δПи рассеяния:

. (2.46)

При поглощении акустическая энергия переходит в тепловую, а при рассеянии уходит из направления распространения волны. Основными факторами, обусловливающими поглощение энергии, являются: вязкость, упругий гистерезис и теплопроводность.

Рассеяние происходит из-за наличия в среде неоднородностей (с отличным от среды волновым сопротивлением), размеры которых соизмеримы с длиной волны. Процесс рассеяния зависит от соотношения длины волны и среднего раз­мера неоднородности. Чем крупнее структура, тем больше рассеяние волны.

В газах и жидкостях затухание акустической волны определяется поглощением, рассеяние отсутствует. Коэффициент поглощения пропорционален квадрату частоты. В качестве характеристики поглощения звука в этих средах вводят параметр . Рассеяние может отсутствовать и в однородных аморфных материалах типа пластмассы, стекла и т. п. материалах. Затухание ультразвуковых волн зависит от материала среды, в которой они распространяются. Например, в воздухе, в пластмассах и т. п. средах затухание велико. В воде затухание в тысячи раз меньше, в стали – незначительное [8].

В металлах, так как они имеют зернистую структуру, затухание акустических волн обусловлено рефракцией и рассеянием. Под рефракциейпонимают непрерывное отклонение акустической волны от прямолинейного направления распространения.

Коэффициент рассеяния в металлах зависит от соотношения среднего размера неоднородностей (среднего размера зерна ) и длины волны и может определяться как [8]

, (2.47)

где С3– коэффициент, не зависящий от величины зерна и анизотропии;FА– фактор анизотропии.

При >>λкоэффициент рассеяния пропорционаленf4, а общий коэффициент затухания

, (2.48)

где А и В – постоянные.

При коэффициент рассеяния

. (2.49)

На значение коэффициента затухания оказывает влияние температура среды. Для оценки изменения δ при измерении температуры можно использовать формулу

, (2.50)

где Δt=t t0; t– температура среды; δ0 – коэффициент затухания при начальной температуреt0; kδ– температурный коэффициент δ.

Если на пути распространения волны встречается среда с другими акустическим свойствами, то акустическая волна частично проходит во вторую среду, частично отражается от нее. При этом можетпроисходить трансформациятипов волн.Трансформациейназывается преобразование волн общего типа в волны другого типа, происходящие на границе раздела двух сред. При нормальном падении ультразвуковых волн (β = 00) трансформации не происходит. В общем случае границы двух твердых тел (рис. 2.12) возникают две (продольная и поперечная) отраженные и две преломленные волны.

При падении продольной волны образуются отраженная и преломленная продольные волны и в результате трансформации – отраженная и преломленная поперечные волны. Подобный процесс наблюдается и при падении поперечной волны. В жидкостях имеется только одна отраженная и одна преломленная волна.

У

Рис. 2.12

глы паденияβ, отраженияγ и преломленияα связаны между собой. Направления отраженных и преломленных (прошедших) волн определяются законом Снелиуса

, (2.51)

где Ci– скорость падающей (продольной или поперечной) волны;Cl1 иCt1– скорости распространения продольных и поперечных волн в первой среде (I);Cl2иCt2– скорости распространения продольных и поперечных волн во второй среде (II).

В акустике под углом падения ультразвуковой волныпонимают угол, образованный нормалью к границе раздела, проходящего через точку прохождения луча, и направлением распространения пучка.

Для продольной волны при некотором значении угла падения βl1, называемогопервым критическим углом , преломленная волна не проникает во вторую среду, а распространяется по поверхности. При дальнейшем увеличении угла падения преломленная поперечная волнаt2также начнет скользить по границе раздела двух сред. Наименьший угол падения, при котором это наблюдается, называетсявторым критическим углом .

При падении поперечной волны из твердой среды на границу раздела при определенном угле падения продольная отраженнаяl1волна сольется с поверхностью. Наименьший угол поперечной волны, при котором еще отсутствует отраженная продольная волна, называетсятретьим критическим углом .

Значения критических углов определяются следующим образом. Используя выражение (2.50), можно записать:

; ; . (2.52)

Свойства акустических волн широко используются при создании наклонных преобразователей для контроля изделий продольными и поперечными волнами (первой средой при этом является призма из оргстекла, а вторая – контролируемое изделие). При практическом использовании наклонных преобразователей необходимо знать значения критических углов. Например, при падении продольной волны lиз оргстекла на границу контролируемого изделия из стали они имеют значения: первый критический угол ≈ 270; второй критический угол ≈ 55 … 560; третий критический угол для границы сталь–воздух ≈ 33,5…340. В практике акустического контроля деталей подвижного состава применяются пьезоэлектрические преобразователи с углами падения (углами призмы) 0, 6, 8, 40, 500[8].

Прохождение акустической волны из одной среды в другую характеризуется коэффициентом прозрачности D, а отражение – коэффициентом отраженияR, которые при падении волны по нормали к границе раздела определяются как

;, (2.53)

где А0, Апр иАотр– амплитуды падающей, прошедшей и отраженной волн.

Эти коэффициенты можно определить и по другим параметрам [8]: интенсивности J, давлениюР, колебательной скоростиVи др.:

;, (2.54)

где Z1иZ2 – удельные акустические сопротивления первой и второй среды.

Коэффициенты прозрачности и отражения определяются для каждого типа возникающих волн, и их значения зависят от соотношения акустических сопротивлений сред. Например, при Z1=Z2наблюдается полное прохождение ультразвука через границу раздела (R= 0;D= 1). ЕслиZ1>>Z2, то энергия падающей волны полностью отражается (R= 1;D= 0).

Явления отражения и прохождения акустической волны широко используются в неразрушающем ультразвуковом контроле различных изделий. Например, на способности ультразвуковых волн, излучаемых в контролируемый объект, отражаться от дефектов с последующей регистрацией эхосигналов основан эхометод акустического контроля. Явление прохождения ультразвуковой волны используется в теневом, зеркально-теневом и других методах акустического неразрушающего контроля.