Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
реферат 2.docx
Скачиваний:
23
Добавлен:
29.03.2015
Размер:
371.48 Кб
Скачать

Физико-химический способ.

К физико-химическим методам получения порошков относят:

- восстановление оксидов и солей;

- электролиз;

- диссоциация карбонилов;

- гидрометаллургический способ.

Восстановление оксидов и солей является одним из наиболее распространенных и экономичных способов, особенно когда в качестве исходного материала используют руды, отходы металлургического производства (окалина) и другие дешевые виды сырья. Восстановлением в техническом смысле этого слова, называют процесс получения металла из его химического соединения путем отнятия неметаллической составляющей (кислород, солевой остаток) при помощи вещества, называемого восстановителем. Процесс восстановления является одновременно и процессом окисления. Если исходное химическое соединение (оксид, соль) теряет неметаллическую составляющую или восстанавливается, то восстановитель вступает с ней во взаимодействие или окисляется.

В общем случае реакцию восстановления можно записать в виде

МеБ + Х - Ме + ХБ, где

Ме - любой металл, порошок которого нужно получить;

Б - неметаллическая составляющая (кислород, солевой остаток и др.)восстанавливаемого исходного химического соединения;

Х - восстановитель;

ХБ - химическое соединение восстановителя.

Стрелки означают, что в ходе реакции возможно повторное образование исходного соединения (МеБ) в результате взаимодействия полученного металла (Ме) и соединения восстановителя (ХБ). Для оценки возможности протекания реакции восстановления необходимо сопоставить величины, характеризующие прочность химических связей в соединении металла (МеБ) и образующимся соединении восстановителя (ХБ). Количественной мерой указанных величин служит величина свободной энергии, высвобождающейся при образовании соответствующего химического соединения. Чем больше высвобождается энергии, тем прочнее химическое соединение. Поэтому реакция восстановления возможна лишь в случае, если при образовании соединения восстановителя (ХБ) выделяется энергии больше, чем при образовании соединения металла (МеБ).

Восстановителем может быть только то вещество, которое обладает большим химическим сродством к неметаллической составляющей восстанавливаемого соединения, чем получаемый металл. В порошковой металлургии в качестве восстановителя наиболее распространены:

- водород;

- оксид углерода (СО);

- конвертируемый природный газ;

- диссоциированный аммиак;

- эндотермический газ (эндогаз);

- твердый углерод (кокс, уголь, сажа);

- металлы.

Водород является одним из самых активных газов-восстановителей. В природе в свободном состоянии водород почти не встречается, и поэтому большое значение приобретают рациональные способы его промышленного производства. Практическое значение получили так называемый железо-паровой способ производства водорода и электролиз воды.

В железо-паровом процессе водород получают при обработке раскаленного (около 800 єС) железа водяным паром по реакциям

Fe + H 2 O = FeO + H 2

3FeO + H 2 O = Fe 3 O 4 + H 2

Получаемый газ содержит до 98% водорода и имеет достаточно высокую стоимость, что ограничивает его применение в порошковой металлургии.

При получении водорода электролизом воды в качестве электролита используются водные растворы щелочей (NaOH, KOH) или кислот ( H 2 SO 4 ), так какь чистая вода плохо пропускает электрический ток. При пропускании постоянного тока через такие растворы происходит разложение воды на ионы водорода ( H + ) и ионы гидроксила ( OH ? ) по схеме

H 2 O > H + + OH ?

Ионы водорода перемещаются к катоду, где отдают свой заряд, превращаясь в атомы водорода. В результате на катоде выделяется газообразный водород. Ионы гидроксила отдают свой заряд на аноде, в результате чего на аноде образуется вода и кислород. Получаемый таким способом газ содержит не менее 99,8% водорода.

Применение водорода для целей восстановления сравнительно ограниченно из-за высокой его стоимости. Кроме того, необходимо помнить о взрывоопасности водорода и строго соблюдать при работе с ним правила техники безопасности. Водородным восстановлением получают порошки вольфрама, молибдена, кобальта, железа, никеля и некоторых других сплавов.

Оксид углерода обычно получают газификацией малосернистого кокса или древесного угля с применением кислородного дутья по реакциям

C + O 2 = CO 2

CO 2 + C = 2CO

Образующийся оксид углерода (СО) очищается от пыли, сернистых соединений, углекислоты, влаги и после очистки содержит не менее 92% СО. Стоимость получаемого оксида углерода высока, поэтому для производства металлических порошков восстановлением его практически не применяют. Конверторный природный газ. Природный газ содержит 93 - 98% метана( CH 4 ). Процесс конверсии заключается во взаимодействии метана с паром при температуре 900 - 1100 єС и в присутствии катализатора по реакции

CH 4 + H 2 O = 3H 2 + CO

Получаемый в промышленных печах конвертируемый газ содержит 75 -76% H 2 , 22 - 23% СО. Он в 8 - 10 раз дешевле водорода и в зависимости от его качества применяется для восстановления оксидов при производстве железного порошка, порошков среднеуглеродистых и легированных сталей, железоникелевых, железовольфрамовых и других сплавов.

Диссоциированный аммиак является дешевым и хорошим заменителем водорода. Разложение аммиака осуществляют в специальных реакторах (диссоциаторах) при температуре 600 - 650 єС. Диссоциированный аммиак содержит 75% H 2 и 25% N 2 и применяется в качестве восстановителя при производстве порошков кобальта, железа, никеля, вольфрама.

Эндотермический газ получают в результате сжигания природного газа или другого углеводородного газа при существенном недостатке воздуха с подводом тепла извне. Эндотермический газ (эндогаз) в последнее время находит широкое применение в порошковой металлургии, хотя обладает меньшей восстановительной способностью по сравнению с водородом. Это объясняется тем, что он более чем в десять раз дешевле водорода и менее взрывоопасен.

Процесс неполного сжигания природного газа ведут при недостатке воздуха в две стадии. На первой стадии кислород взаимодействует с метаном по реакции

CH 2 + 2O 2 = CO 2 + 2H 2 O

На второй стадии процесса избыточный метан реагирует с образовавшимся CO 2 и H 2 O по реакциям

CH 4 + CO 2 = 2CO + 2H 2

CH 4 + H 2 O = CO + 3H 2

Суммарный тепловой эффект реакций первой и второй стадий отрицательный, в связи с чем для поддержания процесса необходим дополнительный подвод тепла извне. Эндогаз, получаемый из природного газа, содержит 18 - 20% СО, 38 - 40% H 2 , около 1% CO, остальное N 2 . С применением эндогаза получают порошки железа и среднеуглеродистых сталей.

Твердый углерод при получении порошков восстановлением используется в виде кокса, древесного угля, сажи. Указанные материалы является сильными восстановителями, так как содержат 93 - 98% углерода. Существенным недостатком этих материалов, используемых в качестве восстановителей, является то, что они содержат нежелательные примеси (сера, зола, влага), переходящие в порошок и ухудшающие его свойства.

Металлотермический. Процесс восстановления химического соединения металлом называют металлотермическим, основанным на большом сродстве металла-восстановителя к кислороду или другому неметаллическому элементу соединения, чем восстанавливаемый металл. Высоким сродством к кислороду обладают кальций, магний, алюминий, натрий, калий, цирконий и бериллий. На практике для осуществления металлотермических реакций восстановления используют в основном кальций, магний, алюминий, натрий.

К металлам-восстановителям предъявляются требования, чтобы они не образовывали с получаемым металлом, сплавов и других соединений. Избыток восстановителя, а также побочные продукты реакции должны полностью отделяться от восстановленного металла.

Металлотермическим восстановлением получают порошки титана, тантала, ниобия, легированных сталей.

Электролиз. Среди физико-химических методов получения металлических порошков электролитический способ по промышленному распространению занимает второе место после восстановления.

Получение порошков электролизом заключается в разложении водных растворов соединений выделяемого металла или его расплавленных солей при пропускании через них постоянного электрического тока и последующей разрядке соответствующих ионов металла на катоде.

При электролизе передача электричества в электролите, представляющем собой раствор солей, кислот и оснований, осуществляется движением положительных и отрицательных ионов, образующихся в результате диссоциации молекул указанных химических соединений. Ионы в электролите в отсутствие внешнего электрического поля движутся хаотически. При наложении электрического поля движение ионов становится упорядоченным, и катионы перемещаются к катоду, а анионы - к аноду.

Источник электрического тока является своеобразным двигателем или насосом, перемещающим электроны с одного полюса на другой. В результате такого принудительного перемещения электронов на катоде образуется избыток отрицательно заряженных электронов на катоде образуется избыток отрицательно заряженных электронов и он приобретает отрицательный заряд, а анод, лишившись части электронов, приобретает положительный заряд.

Источником ионов выделяемого металла является анод, состоящий из этого металла, и электролит, содержащий его растворимое соединение. В случае использования нерастворимого анода источником ионов выделяемого металла является только электролит.

Превращение иона металла в атом связано с расходом некоторого количества энергии. Поэтому в первую очередь протекает тот процесс разрядки, который требует меньших затрат энергии. В связи с этим электролиз является и процессом рафинирования, так как не все имеющиеся в электролите катионы при данных условиях могут выделиться на катоде. В этом случае метод электролиза позволяет получать порошки высокой чистоты, допускающий возможность использования даже загрязненных исходных материалов.

В зависимости от условий электролиза на катоде можно получать твердые хрупкие осадки в виде плотных слоёв, губчатые мягкие осадки и осадки рыхлые. Твёрдые и губчатые осадки для получения порошка измельчают, а рыхлые используют как готовый порошок. Основными факторами, влияющими на структуру катодного осадка является:

- концентрация ионов выделяемого металла;

- температура электролита;

- плотность тока.

Концентрация ионов выделяемого металла влияет на количество и

качество катодного осадка. При электролизе выделение металла на катоде начинается не по всей его поверхности, а в отдельных местах, в первичных центрах кристаллизации. Повышение концентрации ионов выделяемого металла создаёт ускоренное питание этих центров, в результате чего формируется плотный осадок. Понижение концентрации ионов металла в электролите создаёт условия для образования рыхлого осадка. Однако при слишком малой концентрации в процесс электропереноса будут вовлекаться и другие ионы, что снизит количество катодного осадка.

Температура электролита. При повышении температуры увеличивается подвижность ионов ускоряется их перенос, сохраняется повышенная концентрация катионов у катода. В то же время повышается интенсивность химического взаимодействия выделяемого металла с электролитом, что приводит к снижению количества осадка металла на катоде. Кроме того, возрастает летучесть электролита, ухудшающая условия труда. Практически электролиз водных растворов ведут при температуре электролита 40 - 60 єС, а электролиз расплавов - при температуре ниже температуры плавления выделяемого металла, обеспечивая минимальное протекание побочных процессов.

Плотность тока представляет собой силу тока, проходящего через 1 м2 электрода. Она связывает силу тока, являющегося главным фактором, характеризующим её производительность, с суммарной рабочей площадью катодов или анодов в ванне:

П=J/S , где П - плотность тока, А м 2 ;

J - сила тока, А;

S - суммарная рабочая площадь катодов или анодов, м2.

Катодная и анодная плотности тока в ванне не совпадают, так как суммарные поверхности катодов и анодов всегда различаются между собой в силу ряда причин. При большой плотности тока на единице площади катода разряжаются больше ионов и таким образом создаются много первичных центров кристаллизации. В связи с малой скоростью роста кристаллов образуются мелкие, дисперсные осадки. Однако высокая плотность тока приводит к выделению на катоде побочных элементов и снижает количество осадка выделяемого металла. Кроме того, с повышением катодной плотности тока растёт и анодная плотность тока, в результате чего на аноде начинается разрядка побочных ионов, приводящая к ухудшению технико-экономических показателей. Поэтому плотность тока должна быть максимально допустимой и не превышать оптимальное значение.

Изменение плотности тока осуществляется за счет изменения силы тока на ванне или изменением числа катодов (катодной поверхности) при постоянной силе тока.

На электролиз и свойства катодного осадка влияют и другие факторы. В частности, расстояние между электродами, длительность наращивания порошка, кислотность электролита, наличие в нем посторонних ионов, скорость циркуляции электролита, форма и состояние поверхности электродов и другие факторы.

Методом электролиза можно получать порошки всех металлов. В настоящее время электролизом получают порошки меди, железа, серебра, цинка, никеля, кадмия, олова, сурьмы, а также их сплавов.

Электролитический метод производства порошков характеризуется

невысокой производительностью и довольно высокой себестоимостью

получаемого порошка. Однако чистота и высокие технологические свойства электролитических порошков в значительной степени компенсируют недостатки метода.

Диссоциация карбонилов. Карбонилы представляют собой химические соединения металлов с оксидом углерода, которые можно выразить общей формулой Ме а (СО) с . В основе карбонильного метода лежит способность некоторых металлов под воздействием оксида углерода (СО) образовывать комплексное соединения, называемые карбонилами, которые при определённых условиях могут диссоциировать с образованием порошков. Общим требованием к таким соединениям при получении порошков является их легколетучесть и невысокие температуры образования и термического разложения.

Карбонильный процесс получения порошков проходит в две стадии по реакциям:

Ме а Б в + сСО > Ме а (СО) с

Ме a (СО) с > аМе + сСО

На первой стадии исходное сырьё (Ме а Б в ) , содержащее металл (Ме) в соединении с балластным веществом ( Б в ) взаимодействует с оксидом углерода (СО), образуя промежуточный продукт - карбонил [Ме а (СО) с ] , который отделяется от балластной примеси благодаря высокой летучести и собирается в чистом виде.

Во второй стадии промежуточный продукт (карбонил) при нагреве диссоциирует на металл и оксид углерода, который обычно возвращают на первую стадию процесса.

Первую стадию карбонильного процесса называют синтезом карбонила металла, а вторую - термическим разложением карбонила.

При синтезе карбонила на поверхности исходного материала, который может быть металлоломом, отходами металлообработки, окисленными рудами и др., адсорбируются газообразные молекулы оксида углерода (СО), вступающие затем в химическое взаимодействие с металлической составляющей сырья.

Образующееся карбонильное соединение вначале остаётся на поверхности металла, удерживаемое силами сцепления, а затем удаляется с неё в виде газа. Реакция образования карбонила идёт везде, где оксид углерода соприкасается с поверхностью металла в исходном сырье, а именно снаружи твердого тела, в его трещинах и порах. На образование карбонила оказывают влияние температурные условия, а также присутствие веществ, тормозящих или ускоряющих реакцию.

Термическая диссоциация карбонила на металл и оксид углерода обычно проходит при относительно невысокой температуре. Сначала появляются атомы металла и газообразные молекулы оксида углерода. Порошковые частицы формируются в результате кристаллизации парообразного металла. Сначала образуются зародыши, а затем из них вырастают крупинки порошка различной формы.

На скорость образования зародышей и на скорость формирования металлических кристаллов влияют степень разряжения в аппарате, концентрация паров металла и главным образом температура. При относительно низкой температуре образуется значительно больше зародышей, чем при повышенной. Увеличение концентрации пара металла и снижение вакуума в аппарате благоприятствует образованию зародышей.

Условия развития зародышей отличны от условий их образования. Скорость роста кристаллов также зависит от температуры процесса и от концентрации паров металла. Однако глубина вакуума влияет на форму и размер частиц металла. В условиях глубокого вакуума образуются очень мелкие частицы с правильно сформированными гранями. В умеренном вакууме образуется смесь правильных кристаллов самых различных размеров, а в неглубоком вакууме появляются дендриты. В промышленных масштабах карбонильным методом производят порошки никеля, железа, кобальта, хрома, молибдена, вольфрама и некоторых других металлов. Метод позволяет получать и полиметаллические порошки, например железоникелевые, железомолибденовые, железокобальтовые, железоникельмолибденовые. В этом случае термическому разложению подвергают смесь карбонилов соответствующих металлов. Сами карбонилы при этом готовят отдельно. Сплавы можно получать и в том случае, если в аппарат разложения вместе с парами карбонила вводить порошок другого металла. Карбонил разлагается на поверхности порошковых частиц и образуется сплав.

Гидрометаллургический способ. Метод является одним из способов хлорной металлургии, в которой используются активные свойства хлора и хлоридов для получения редких металлов и веществ в высокочистом состоянии, когда другие известные методы не могут быть применены. Метод может быть использован и для получения легированного порошка из комплексных руд, содержащих никель, хром, ванадий и другие легирующие элементы, и перерабатываемые в настоящее время с большими потерями указанных элементов.

Сущность способа заключается в том, что металлосодержащий материал подвергается процессу восстановления. Полученный продукт обрабатывается соляной кислотой, в результате чего металл переходит в раствор образуя хлориды по схеме:

Ме + HCl > МеCl + H 2

Нерастворимые компоненты (пустая порода, зола и др.) остаются в осадке. Раствор отделяют от осадка фильтраций, упаривают до концентрации насыщения и подвергают кристаллизации. Полученные кристаллы хлоридов восстанавливают водородом.

Применительно к комплексным рудам в раствор переходят железо, никель, хром, ванадий, марганец. Нерастворимый осадок имеет самостоятельную ценность, так как после перевода в раствор железа и некоторых легирующих элементов он обогащается другими компонентами.

В термодинамическом отношении, характеризующем возможность получения легированного железа из руд хлоридным методом, представляют интерес три основные операции:

- восстановительный обжиг руды;

- растворение обожженной руды в соляной кислоте;

- восстановление хлоридов.

Расчеты показывают, что при восстановительном обжиге в интервале температур 700 - 1000 °С возможно восстановление оксидов железа и никеля. Оксиды остальных металлов в указанном температурном интервале не восстанавливаются. Однако, в присутствии железа возможно восстановление оксидов хрома и марганца, сопровождающегося образованием твердого раствора

(Fe - Ме), снижающим сродство восстанавливаемого металла к кислороду.

Из приведённых зависимостей следует, что в присутствии железа равновесный состав газа беднее водородом и оксидом углерода. И образование раствора хрома и марганца в железе существенно облегчает процесс восстановления оксидов хрома и марганца и сдвигает его в область более низких температур.

Следовательно, при восстановительном обжиге комплексных руд возможно восстановление железа, никеля, хрома, марганца и при растворении обожженной руды в соляной кислоте они перейдут в раствор, образуя хлориды. Оксиды остальных элементов, входящих в состав руд, в этих условиях не восстанавливаются и перейдут в нерастворимый остаток.

Хлориды марганца и хрома при указанных температурах не восстанавливаются. Однако, восстановление их в присутствии металлического железа возможно при температурах 600 - 700 °С с образованием твердого раствора хрома и марганца в железе.

Таким образом термодинамические расчеты показывают на возможность осуществления основных операций хлоридного метода получения легированного железа из комбинированных руд. При обжиге возможно восстановление оксидов железа, никеля при температурах 700 - 1000 °С, а более прочных оксидов хрома имарганца - при 900 - 1000 °С в присутствии металлического железа с образованием твердых растворов этих элементов в железе. При растворении руды в соляной кислоте основные элементы переходят в раствор, образуя хлориды, восстановление которых возможно при температурах 600 - 700 °С.

Технологический процесс получения легированного железа из комплексных руд хлоридным методом представлен на рисунке 58. Усредненная на рудном дворе руда поступает в дробильное отделение. Сюда же подается твердый восстановитель. В процессе размола происходит равномерное перемешивание руды и восстановителя. Приготовленная шихта направляется на восстановительный обжиг. Для ускорения процесса обжиг проводится с использованием газообразного восстановителя. Подвергнутая восстановительному обжигу руда направляется в реакторы растворения, заполненные соляной кислотой.

Начальная стадия растворения происходит бурно, сопровождается интенсивным выделением водорода, который, пройдя системы осушки и очистки, подаётся на восстановление хлоридов. По мере снижения концентрации соляной кислоты и сокращения поверхности твердой фазы скорость реакции растворения падает. Для ускорения процесса растворения на конечном этапе реакционный объём обогревается паром, подаваемым в паровые рубашки реакторов.

Полученная в результате растворения пульпа, содержащая частицы нерастворимого остатка, подается на фильтрацию, где раствор отделяется от нерастворимого остатка. Отфильтрованный раствор поступает на выпаривание и кристаллизацию.

Кристаллы хлоридов направляются на восстановление, которое осуществляется с помощью водорода. Образующийся в ходе восстановления хлористый водород поступает на регенерацию соляной кислоты.

К числу основных достоинств гидрометаллургического способа следует отнести высокую чистоту порошка и почти полная регенерация водорода и соляной кислоты, образующихся на стадиях растворения металлосодержащего сырья и восстановления хлоридов. Кроме того, нерастворимый осадок имеет свою самостоятельную ценность, так как после перевода в раствор получаемого металла он обогащается другими ценными компонентами.

Для случая использования легированного металлосодержащего сырья можно регулировать состав получаемого порошка путем селективного восстановления сложных хлоридов.

Изготовление изделий и деталей из порошков

Получение порошков механическими методами

При механическом способе  изготовления  порошков превращение исходного  материала  в  порошок происходит путём механического измельчения я твердом или  жидком  состоянии без  изменения  химического  состава  исходного  материала.  К механическим способам относят дробление  и  размол, распыление, грануляцию и обработку резанием измельчаемого материала. При химико-металлургическом способе изменяется химический составили агрегатное состояние исходного материала. Основными методами при химико-металлургическом производстве порошков являются: восстановление окислов, электролиз металлов, термическая диссоциация карбонильных соединений.

Механические методы получения  порошков.  Измельчение твердых материалов - уменьшение начальных размеров частиц путем разрушения их под действием внешних усилий. Различают измельчение дроблением, размолом или истиранием. Наиболее целесообразно  применять механическое измельчение хрупких металлов и их сплавов таких, как кремний,сурьма, хром, марганец, ферросплавы, сплавы алюминия с магнием. Размол вязких пластичных металлов (медь, алюминий и др.) затруднен. В случае таких металлов  наиболее целесообразно использование я качестве сырья отходов образующиеся при обработке металлов (стружка, обрезка и др.).

При измельчении комбинируются различные виды воздействия на материал статическое - сжатие и динамическое - удар, срез - истирание, первые два вида имеют место при получении крупных частиц, второй и третий – при тонком измельчении. При дроблении твердых тел затрачиваемая энергия выполняет работу упругого и пластического деформирования и разрушения, нагрева материалов, участвующих я процессе размельчения.

Для грубого размельчения используют щековые, валковые и конусные дробилки и бегуны; при этом получают частицы размером 1---10 мм, которые являются исходным материалом для тонкого измельчения, обеспечивающего производство требуемых металлических порошков. Исходным материалом для тонкого измельчения может быть и стружка, получаемая при точении, сверлении, фрезеровании и других операциях обработки резанием; при резании получают кусочки стружки размером 3...5 мм почти для любых металлов путем изменения режимов резания,углов резания и введения колебательных движений.

Окончательный размол полученного материала проводится в шаровых вращающихся, вибрационных или планетарных центробежных, вихревых и молотковых мельницах.  Шаровая мельница – простейший аппарат, используется для получения относительно мелких порошков. При вращении барабана шары поднимаются вследствие трения на

некоторую высоту и поэтому возможно несколько режимов измельчения: 1) скольжения, 2) перекатывания, 3) свободного падения,4)  движения шаров при критической скорости вращения барабана.

В случае скольжения шаров по внутренней поверхности вращающегося барабана материал истирается между  стенкой  барабана  и внешней поверхностью массы шаров, ведущей себя как единое целое. При увеличении частоты вращения шары поднимаются и скатываются по наклонной поверхности и измельчение происходит между поверхностями трущихся шаров.  Рабочая поверхность истирания в этом случае во много роз больше и поэтому происходит более интенсивное истирание материала, чем в первом случае.

При большей частоте вращения шары поднимаются до наибольшей высоты и, падая вниз, производят дробящее действие, дополняемое истиранием материала между перекатывающимися шарами.  Это наиболее интенсивный размол. При дальнейшем увеличении частоты вращения шары вращаются вместе с барабаном мельницы, а измельчение при этом практически прекращается.

Интенсивность измельчения определяется  свойствами  материала, соотношением рабочих размеров - диаметра и длины барабана, соотношением между массой и размерами размольных тел и измельчаемого материала.  Для увеличения интенсивности измельчения процесс проводят в жидкой среде, препятствующей распылению материала и слипанию частичек. Количество жидкости составляет 0,4 л на 1кг размалываемого материала.

Длительность измельчения: от нескольких часов до нескольких суток.  В производстве используют несколько типов шаровых мельниц. В различных типах шаровых мельниц соотношение средних размеров частиц порошка до и после измельчения, называемое степенью измельчения, составляет 50. . . 100. При более высокой частоте воздействия внешних сил на частицы материала применяют вибрационные мельницы. В таких мельницах воздействие на материал заключается в создании сжимающих и срезывающих усилий переменной величины, что создает усталостное разрушение порошковых частиц.

Тонкое измельчение трудноразмалываемых материалов часто выполняют на планетарных центробежных мельницах с шарами, используемыми для размола.

По сравнению с шаровыми мельницами в планетарных центробежных мельницах,

размол в сотни раз интенсивнее и одновременно в несколько раз менее производителен, так эта мельница периодического, но не непрерывного (как шаровая) действия с ограниченной загрузкой измельчаемого материала.

Для размола пластичных материалов используют используют вихревые мельницы, в которых процесс измельчения происходит за счет разрушающих ударов наносимых сами частицами измельчаемого материала.

Распыление и грануляция жидких металлов является наиболее простым и дешевым способом изготовления порошков металлов с температурой плавления

до1600 С: алюминия, железа, сталей, меди, цинка, свинца, никеля и других металлов и сплавов. Сущность измельчения расплава состоит в дроблении струи расплава либо высокоэнергонасыщенным газом или жидкостью, либо механическим распылением, либо сливанием струи расплава жидкую среду (например, воду). Из многих вариантов наиболее широко применяется схема распыления металлов.

Для распыления металл плавят в электропечах. В зависимости от свойств расплава и требований к качеству порошке  распыление осуществляют воздухом, азотом, аргоном, гелием, а для защиты от окисления – инертным газом. Распыление воздухом - самый экономичный способ изготовления порошков.  Размеры частиц получают от 1 мм до сотых долей миллиметра.

Получение армирующих волокон

Армирование волокнистых полимерных композитов осуществляется определенными видами волокнистых структур — армирующими волокнистыми наполнителями (АВН). Армирующие волокнистые наполнители (АВН) включают большое число разнообразных текстильных структур, изготавливаемых на основе волокон и нитей (пряжи, химических нитей) и бумажных полотен. Широкий набор различных волокнистых структур диктуется необходимостью их получения с различными механическими, технологическими и функциональными свойствами. Свойства волокнистых полимерных композитов, особенно их механические свойства, определяются, прежде всего, армирующими волокнами и нитями — их видом и свойствами, размерами и расположением, то есть строением армирующего волокнистого наполнителя. В качестве армирующих волокнистых наполнителей используются волокна (различной природы и длины резки), нити, жгуты и ровинги (жгутики), ленты, шнуры, ткани, плетеные полотна, трикотажные полотна, нетканые полотна, бумаги и другие. Таким образом, используя различные виды АВН и технологические приемы их расположения в волокнистом композите, можно оптимизировать расположение армирующих волокон и нитей в готовом композите или изделии на его основе и добиться такого наиболее рационального варианта, при котором большая часть армирующих волокон расположена в направлении главных действующих механических напряжений в условиях эксплуатации. Выбор вида АВН определяется несколькими факторами: • пространственным строением для получения заданного расположения армирующего компонента (волокон или нитей) — в направлении действующих усилий (для механически нагруженных композитов) или равномерного расположения (для изотропных видов композитов); • достижением оптимальной (часто максимальной) степени армирования; • возможностью равномерного расположения АВН по заданной поверхности изделия сложной формы (например, двоякой кривизны); • доступностью и экономическими соображениями (для композитов с невысоким уровнем свойств) и др. Следует заметить, что пространственное расположение волокон и нитей в различных волокнистых структурах обычно отличается от прямолинейного и отклоняется от направления действия механических нагрузок в готовом композите или изделии. Это приводит к появлению трансверсальных и сдвиговых напряжений в направлениях, приводящих к возможному нарушению адгезионного контакта между волокнами и матрицей (связующим). Важно, чтобы эти напряжения не превышали уровень адгезионного контакта (при сдвиге или отрыве), что может инициировать локальное разрушение и привести к снижению механических свойств композита. Таким образом, выбор структуры армирующего волокнистого наполнителя является весьма важным, поскольку он во многом определяет степень реализации механических свойств волокон или нитей в готовом композите. В композитах при их нагружении расположение волокон изменяется незначительно, хотя они деформируются вплоть до разрушения композита. В отличие от композитов в готовых текстильных материалах вследствие лабильности их структуры волокна и нити существенно меняют свое расположение, ориентируясь в направлении максимальных действующих нагрузок. Влияние длины волокон на свойства композитов существенно, но только до длины, составляющей несколько критических размеров. Таким образом, достижение необходимых механических свойств композитов при длинах волокон порядка нескольких миллиметров уже преимущественно зависит от их механических свойств и расположения в волокнистом армирующем наполнителе по отношению к действующим внешним нагрузкам. В технологии получения композитов и изделий из них длина волокон в АВН во много раз больше критической, что необходимо для обеспечения «податливости» волокнистой структуры без ее разрыва. Это играет важную роль при использовании АВН в сложных по форме композитных изделиях, поскольку при получении композитов изменение раскладки АВН позволяет в определенных пределах ориентировать волокна или нити заданным образом. По расположению структурных элементов (волокон, нитей) АВН могут быть условно разделены на следующие виды: • 1D — однонаправленные (нити, ленты, жгуты и др.); • 2D — двунаправленные (тканые, вязаные или плетеные полотна); • 3D — трехмерно ориентированные (трехмерные ткани и др.); • с хаотическим расположением волокон или нитей в плоскости (волокнистыеслои, холсты, большинство нетканых материалов, бумаги); • с хаотическим расположением волокон в трехмерном пространстве (специальные текстильные структуры). Основные варианты расположения волокон в армирующих наполнителях и. соответственно, в полученных на их основе композитах приведены на схемах рис. 1 Рис. 1. Основные схемы расположения дисперсных наполнителей/волокон/нитей в различных видах АВН и армированных полимерных материалах Дать какое-либо обобщенное описание всех волокнистых структур, применяемых в качестве АВН, просто невозможно — их множество в связи с многочисленными прикладными задачами создания из них материалов и изделий с самыми разнообразными характеристиками. Каждая из перечисленных волокнистых структур имеет большое число вариантов, зависящих от технологии их получения и заданных свойств. В связи с изложенным ниже в главе 6 будут рассмотрены основные виды АВН, их особенности и примеры структур, иллюстрирующих различные области применения. Таким образом, используя различные виды АВН и технологические приемы их расположения в волокнистом композите, можно оптимизировать расположение армирующих волокон или нитей и добиться такого наиболее рационального варианта, при котором большая часть армирующих волокон расположена в направлении главных действующих механических напряжений в условиях эксплуатации. Основными видами армирующих волокнистых наполнителей являются следующие. Короткие волокна. Являются одним из основных видов армирующих наполнителей. Диапазон длин резаных (рубленых) волокон может быть очень широким — от 3-10 мм (для изготовления бумаг или премиксов на основе термопластов) до 30-40 мм (в волокнитах на основе реактопластов). Как исходный материал сами короткие волокна применяются редко, поскольку они неудобны при дозировании (недостаточно рассыпчаты) и плохо диспергируются в матрице. Обычно на их основе изготавливаются волокнистые армированные полуфабрикаты — наполненные волокнами гранулы, премиксы и пресс-волокниты. Их применение гораздо удобнее при дозировке и последующем процессе изготовления изделий. Премиксы часто изготавливаются путем совместного экструдирования ровингов (жгутов) с термопластичной матрицей в виде прутков и резки (дробления) их на гранулы с длиной резки, соответствующей заданной длине волокон. Особым случаем является получение фибриллированных синтетических волокон (фибриллятов, часто называемых «пульпой») как для изготовления синтетических бумаг, так и для непосредственного введения в состав волокнистых композитов. Среди синтетических волокон фибриллируются те, которые имеют высокоанизотропную фибриллярную структуру — высокоориентированные целлюлозные, параарамидные и некоторые другие. Практическое применение приобрели, прежде всего, параарамидные фибрилляты, получаемые путем механической дезинтеграции готовых волокон в водной среде. Параарамидные фибрилляты часто изготавливают из технологических отходов волокон и нитей. Высокая стоимость параарамидов делает такое использование отходов волокон вполне рентабельным, кроме того, они позволяют получать композиты улучшенных свойств, в частности, с повышенной прочностью на сдвиг. Нити, жгутики (ровинги), жгуты и ленты на их основе являются однонаправленными АВН и применяются для изготовления высокопрочных, однонаправленных композитов, а также намотанных изделий. Однонаправленные АВН также используются и для получения слоистых пластиков путем выкладки слоев во взаимно перпендикулярных направлениях или под различными углами. Такое послойное расположение наполнителя особенно важно в случае прессования композитов на основе хрупких нитей, где в текстильных структурах наличие перегибов приводит к снижению механических свойств волокон (нитей) или их разрушению при прессовании. При получении жгутиков (ровингов), жгутов и однонаправленных лент методом сложения (трощения) важное значение имеет равномерное сложение отдельных нитей без их разнодлинности, которая может приводить к неравномерности их нагружения в готовом композите и снижает его механические характеристики в направлении армирования (прочность, модуль деформации). Разнодлинность особенно сказывается в случае высокомодульных волокон (нитей) с малыми деформациями при разрыве. В некоторых случаях (например, в случае углеродных АВН) применяются тканые ленты, где армирующие нити являются основой, а редко расположенный уток служит в основном для фиксации нитей и сохранения структуры лент. Следует также отметить, что высокомодульные нити, жгуты и ленты, предназначенные для получения особо прочных однонаправленных и намотанных изделий, должны уже в технологии их получения наматываться на патроны большого диаметра во избежание появления наведенной разнодлинности между отдельными элементарными или комплексными нитями. Так, например, для арамидных и углеродных нитей с линейной плотностью 100 текс и более наружный диаметр патрона желательно иметь не менее 80-100 мм. Тканые структуры являются наиболее распространенными текстильными материалами, используемыми для получения слоистых пластиков типа текстолитов в виде листовых, намотанных и формованных полуфабрикатов. Они применяются также для изготовления прессованных изделий с большим радиусом кривизны. Для получения текстолитов применяют ткани полотняного, саржевого, сатинового и других простых переплетений, причем наличие в раппорте длинных перекрытий способствует получению композитов с более высоким уровнем механических свойств. Для изготовления текстолитов используются ткани различной поверхностной плотности — легкие (до 150 г/м2), средние (до 300 г/м2) и тяжелые (свыше 300 г/м2). Из хлопчатобумажных тканей чаще всего используют бязь, шифон, миткаль, бельтинг. Плетеные текстильные материалы. В последнее время для производства текстолитов все большее применение находят плоские плетеные текстильные структуры с заданным углом расположения наполнителей и раппортом переплетений, обеспечивающих максимально высокие механические характеристики в направлении действия внешних нагрузок. Обычно раппорт выбирается с достаточно длинными перекрытиями нитей, поскольку в этом случае обеспечивается достижение большей прочности и жесткости структуры в заданном направлении. Кроме того, используются плетеные ленты и шнуры, применение которых диктуется особенностями профиля и механических свойств композиционных деталей и изделий. В большинстве случаев плетеные структуры изготавливаются на основе оптимизационных расчетов по предварительным заказам целевого назначения. Трикотажные (вязаные) полотна и другие структуры пока еще сравнительно мало используются при производстве массовых текстолитов и изделий из них. Однако возможность создания структур с заданным расположением нитей, необходимым для наиболее ответственных видов текстолитовых деталей и изделий, несущих высокие нагрузки, имеет в этих случаях определенные преимущества. Трикотажные полотна вследствие высокой податливости позволяют получать детали и изделия с малыми радиусами кривизны. Для достижения более высокого уровня свойств в направлении расположения слоев применяются переплетения с длинными прямыми участками петель. Трикотажные полотна имеют важные преимущества также в случаях изготовления деталей и изделий с заданным расположением наполнителя в виде различных вязаных объемных форм с различной плотностью вязания и заданной толщиной материала. Они обеспечивают также получение материалов большой толщины с наличием поперечно расположенных нитей, что необходимо для получения малоанизотропных композиционных изделий. Однако применение трикотажных армирующих структур имеет один общий недостаток — трудность достижения высоких значений объемного наполнения. Трехмерные тканые, плетеные, вязаные структуры широко применяются при изготовлении деталей и изделий, несущих высокие механические нагрузки. Эти виды АВН изготавливаются обычно на основе высокопрочных и/или высокомодульных нитей: параарамидных, углеродных или различных видов неорганических. Получаемые объемные структуры имеют внешнюю форму изготавливаемых деталей или изделий. В этих структурах нити располагаются таким образом, чтобы они были ориентированы в направлении наибольших механических напряжений. Детали и изделия получают обычно путем пропитки объемных структур компонентами реактопластов с последующим отверждением матрицы. Нетканые материалы и другие волокнистые слои (холсты, бумаги) являются распространенным видом АВН для получения листовых текстолитов и гетинаксов с умеренными механическими характеристиками. Они широко используются при изготовлении изделий методами прессования и контактного формования (выкладки), поскольку они более податливы, чем тканые и другие структуры из нитей, вследствие подвижности отдельных волокон друг относительно друга, что обеспечивает возможность изготовления изделий со сравнительно малыми радиусами изгиба при сохранении целостности и незначительным утончением волокнистого слоя при прессовании. Поэтому нетканые полотна предпочтительнее для получения формованных изделий сложной формы. Комбинированные и гибридные волокнистые материалы на основе волокнистых слоев, нитей и различных текстильных структур применяются в некоторых случаях для обеспечения заданных механических характеристик композитов и изделий на их основе, особенно в случаях сверхпрочных органических волокон и нитей, имеющих высокий уровень удельных механических характеристик при растяжении, но высокую анизотропию свойств и поэтому недостаточный их уровень в трансверсальном направлении и при сдвиге. Это вызывает необходимость повышения поперечных свойств в анизотропных композитах (слоистых пластиках и других однонаправленных структурах). Необходимость повышения поперечных свойств особенно важна при армировании параарамидными волокнами, нитями и АВН на их основе. В этом случае в качестве второго компонента используются углеродные, стеклянные или другие виды неорганических волокон и нитей. При этом возможно как получение гибридных АВН (лент, жгутов, тканей и других видов полотен), так и совместное их применение в процессе послойной выкладки при получении композиционным волокнистых материалов (КВМ). Гибридные АВН могут быть получены в виде волокнистых слоев, тканей, плетеных структур, вязаных (трикотажных) материалов. Еще одной целью применения гибридных АВН является придание им некоторых дополнительных физических или других свойств. Так, например, для получения электропроводных композитов и изделий из них в АВН вводятся электропроводящие углеродные волокна или нити. Таким путем создаются композиты с заданной электропроводностью или обладающие антистатическими свойствами. Важным случаем является изготовление гибридных АВН, где второй компонент несет вспомогательные функции и затем либо удаляется, либо входит в состав матрицы при получении композита. Примером этого является получение тканых или вязаных АВН из жестких и хрупких нитей — углеродных или тонких проволок тугоплавких металлов (молибдена, вольфрама и др.). В качестве нити-спутника используется хлопчатобумажная пряжа (удаляемая затем выжиганием, кислотным травлением или она остается в составе композита), а также растворимая поливинилспиртовая нить (ее можно удалить растворением горячей водой или она набухает и входит в состав почти любого термореактивного связующего). Расположение армирующих волокон/филаментов в армирующих волокнистых наполнителях и композитах Для волокнистых полимерных композиционных материалов (ПКМ) расположение армирующих волокон имеет определяющее значение и, как уже говорилось, задается строением армирующего волокнистого наполнителя (АВН). Основные варианты расположения волокон в армирующих наполнителях, и, соответственно, в получаемых на их основе композитах приведены на схемах рис. 1. Во всех случаях выбора армирующего волокнистого наполнителя необходимо стремиться к наиболее полной реализации его механических характеристик в получаемом композите и изделии. Это зависит от выбора вида, структуры и расположения армирующего волокнистого наполнителя и объемной степени армирования (объемной доли волокон в композите). С увеличением степени армирования механические свойства пропорционально возрастают. Однако эта зависимость выдерживается только в определенных пределах, так как на нее влияют при малых степенях армирования особенности свойств волокон — их модуль упругости и хрупкость. Так, например, для углеродных волокон (с высоким модулем упругости и малой деформацией до разрыва и поэтому хрупких) прямая пропорциональность не выдерживается при малых степенях армирования, поскольку матрица (связующее) во время деформирования, увлекая волокна за собой, приводит к их разрушению (см. рис. 2 справа). При больших степенях армирования недостаток связующего для заполнения межволоконного пространства выше критического значения (67—70%) приводит к нарушению монолитности композита и, соответственно, появлению в нем неравномерности напряжений, а поэтому к разрушению при меньших значениях механических напряжений, чем для монолитных образцов. Рис. 2. Зависимости механических свойств композита от ориентации армирующих волокон Фвср и объемной степени армирования χ. Правый рисунок характерен для особо хрупких, например углеродных волокон Предельную степень наполнения или армирования можно рассчитать, исходя из плотной геометрической укладки шаров или цилиндров (рис. 3). Она составляет следующие величины: • для наиболее плотной укладки шаров χ = 0,524; • при наиболее плотной укладке цилиндров по треугольнику (гексагональная упаковка) χ = 0,907; • при укладке цилиндров по квадрату χ = 0,785; • при перекрестной слоевой укладке цилиндров χ = 0,785; • при плотной трехмерной укладке цилиндров χ = 0,59. Рис. 3. Схема плотной и реальной укладки волокон в армированных пластиках: а — гексагональная (по треугольнику); б — по квадрату; в — реальная однонаправленная укладка; г — перекрестная; д — трехмерная

Получение компонентов для матриц

Основные виды полимерных матриц (связующих)

К ним относятся термопластичные матрицы (термопласты) и отверждающиеся (реактопласты), которые являются полимерными (или полимерообразующими) реакционными системами.

Выбор и соотношение исходных компонентов в процессах получения матриц на основе реактопластов зависит от вида и условий получения ВПКМ, способа их термической обработки, возможности сочетания с определенными наполнителями.

Как уже говорилось, в ВПКМ матрица (связующее) служит для передачи и перераспределения механических усилий между отдельными частицами дисперсной фазы, защиты наполнителя от внешних воздействий, создания монолитности материала. Все эти функции связующего зависят от его взаимодействия с наполнителем в процессе получения и эксплуатации композита - соотношения свойств компонентов, смачивания, адгезии, изменения свойств при взаимодействии компонентов.

Матрица (связующее) в виде расплавов, растворов, дисперсий (порошков, эмульсий, суспензий), волокон или пленок сочетается с армирующими волокнистыми наполнителями при получении армированных волокнистых полуфабрикатов (премиксов, препрегов, прессовочных, заливочных и других композиций) или в процессах формования заготовок и изделий методами смешения, пропитки, напыления, механического соединения. Важное значение при этом имеет равномерное распределение матрицы (связующего) между частицами наполнителя или армирующего компонента. Оно зависит от смачиваемости компонентов, вязкости связующего и его поверхностной энергии. На стадиях переработки полуфабрикатов вид, количество и распределение связующего определяют технологичность материала - формуемость, объемную усадку и другие характеристики.

Термопласты представляют собой линейные или разветвленные карбоцепные или гетероцепные полимеры, сополимеры и их смеси. При нагревании они обратимо переходят в размягченное или расплавленное состояние.

Наиболее распространены термопласты на основе карбоцепных полимеров - полиэтилена высокой и низкой плотности (ПЭВП, ПЭНП), полипропилена (ПП), поливинилхлорида (ПВХ), полистирола, полиакрилатов и др. Они доступны, дешевы, но имеют невысокие термические характеристики. Особое место среди карбоцепных полимеров занимают фторопласты (фторполимеры и сополимеры), имеющие высокую температуру плавления, термостойкость, химостойкость, негорючесть, антифрикционные свойства.

Широко используются термопластичные гетероцепные полимеры: полиамиды (ПА) и сополиамиды (поликапроамид - капрони найлон 6, полигексаметиленадипамид - аниди найлон 66, полиамиды 68, 10, 610, 12, 612 и др.), а также сложные полиэфиры (полиэтилентерефталат) и линейные полиуретаны, которые обладают более высоким комплексом функциональных свойств, но сложнее в переработке и дороже. Большинство термопластов являются материалами с умеренными термическими характеристиками. В термопласты часто вводятся различные добавки: минеральные порошкообразные наполнители, короткорезаные волокна и др.

В состав термостойких термопластов входят различные ароматические полимеры: поликарбонаты, ароматические полиамиды (полиметафениленизофталамид), ароматические полиэфиры, полисульфоны, полифениленоксиды, ароматические поликетоны и некоторые другие. Они обладают высокой тепло- и термостойкостью, устойчивы к эксплуатационным воздействиям, однако сравнительно дороги и в ряде случаев трудно перерабатываются.

К реактопластам относятся материалы на основе жидких или твердых, способных при нагревании переходить в вязкотекучее состояние, реакционноспособных олигомеров, отверждаемых при повышенной температуре и/или в присутствии специально добавляемых в композицию веществ - отвердителей. При этом вследствие протекания химических реакций образуется сетчатая структура.

По виду реакционноспособных компонентов реактопласты подразделяют на следующие группы: фенопласты (на основе фенолоформальдегидных смол; аминопласты (на основе меламино- и мочевиноформальдегидных смол); полиэфирные смолы (на основе ненасыщенных полиэфиров, отверждаемых путем сшивки стиролом, акриловыми мономерами, полиалкиленгликольмалеинатом и полиалкиленгликольфумаратом); эпоксидные (эпоксидиановые) смолы, отверждаемые многофункциональными спиртами, аминами, карбоновыми кислотами. Часто для эпоксидных смол горячего отверждения используется триэтаноламинтитанат (ТЭАТ), а для смол холодного отверждения - полиэтиленполиамин (ПЭПА).

Наряду с указанными видами базовых связующих смол часто используются модифицированные их виды, в частности, эпоксифенольные. Процессы получения и переработки этих связующих весьма различны.

Все виды матриц (связующих) имеют свои особенности применения. Фенольные и близкие к ним смолы постепенно выделяют вредные компоненты, особенно при повышенных температурах, поэтому, как правило, их не рекомендуется использовать для изделий бытового назначения. Для таких изделий целесообразнее использовать меламиновые смолы, поскольку они не образуют заметных количеств вредных выделений. Полиэфирные смолы также малотоксичны в отвержденном состоянии, но обладают наиболее низкими механическими и термическими свойствами.

Наибольшая прочность и высокая адгезия к армирующим волокнам среди реактопластов присуща эпоксидным смолам, поэтому их предпочтительно использовать для изготовления более нагруженных изделий. Они также достаточно термостойки. При модификации этих смол фенольными связующими их показатели заметно улучшаются. Однако эпоксидные смолы относятся к весьма дорогим среди указанных реактопластов. Кроме того, они могут выделять в небольших количествах токсичные вещества.

При получении композитов со специальными свойствами применяются особые виды матриц (связующих), в том числе с высокой температурой размягчения и высокой термостойкостью, являющиеся высококачественными диэлектриками: термопласты (фторполимеры, ароматические метаполиамиды, например фенилон и номекс, поликарбонаты, полифениленоксид, полисульфоны, ароматичекие поликетоны), реактопласты (например, полиимиды).

В качестве матрицы с высокими электроизоляционными свойствами и высокочастотного диэлектрика применяется также ПЭВП, однако его термические характеристики невысоки.

Получение углеграфитовых материалов

Все виды углеграфитовых материалов производятся на основе углерода. Ассортимент изделий весьма многочислен, а каждый вид характеризуется оригинальными свойствами.

Основную роль в создании такой разновидности изделий играют прежде всего углеродистые вещества, встречающиеся в разнообразных формах, а также их сложная технологическая переработка.

Объяснения большому разнообразию физических свойств различных видов углеродистых материалов следует искать в различной группировке отдельных кристаллов, а также в специфичности кристаллической решетки графита. Свойства готового продукта зависят не только от молекулярной, но и от дисперсной структуры. Поэтому в зависимости от степени дисперсности, изделия будут обладать различными свойствами даже при большом сходстве в молекулярном составе.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]