Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Оптика.doc
Скачиваний:
31
Добавлен:
25.03.2015
Размер:
992.26 Кб
Скачать

41

1 Отпика 7

1.1 Развитие взглядов на природу света. Световые волны 7

1.2. Отражение и преломление плоской волны на гранях двух диэлектриков 10

1.3. Полное внутренне отражение 11

1.4. Соотношение между амплитудой и фазой 11

2 Интерференция 14

2.1 Явление интерференции. Сложение колебаний 14

2.2 Ширина интерференционных полос 15

2.3 Способы наблюдения интенсивности делением волнового фронта волны 17

2.4 Способы получения когерентных пучков делением амплитуды 17

2.5 Применение интерференции 20

3 Дифракция 23

3.1 Принцип Гюйгенса-Френеля 23

3.2 Прямолинейность распространения света. Зоны Френеля 25

3.3 Дифракция от среднего отверстия 27

3.4. Дифракционная решетка 29

4 Взаимодействие электромагнитных волн с веществом 29

4.1 Дисперсия света 29

4.2 Электронная теория дисперсии света 31

4.3 Поглощение (абсорбция света) 32

4.4 Рассеяние света 33

5 Квантовые свойства света 35

5.1 Виды фотоэлектрического эффекта 35

5.2 Законы внешнего фотоэффекта (законы Столетова) 37

5.3 Уравнение Эйнштейна для внешнего фотоэффекта 38

5.4 Применение фотоэффекта 39

Заключение 40

Список использованных источников 41

1 Отпика

1.1 Развитие взглядов на природу света. Световые волны

Уже в первые периоды оптических исследований были на опыте установлены следствие четырех основных закона оптических явлений:

  1. Закон прямолинейного рассеивания света.

  2. Закон независимости световых пучков (справедлив только в линейной оптике).

  3. Закон отражения.

  4. Закон преломления света на границах двух сред.

Первый: Свет в оптически однородной среде распространяется прямолинейно.

Второй: Эффект, производимым отдельным пучком, от того действует ли одновременно остальные пучки или они устранены.

Третий:

Отраженный луч лежит в одной плоскости с падающим лучом и перпендикуляром, проведенным к границе раздела двух сред в точке падения; угол падения равен углуотражения.

Четвертый: Луч падающий, луч преломленный и перпендикуляр, проведенный к границе раздела в точке падения, лежат в одной плоскости; отношение синуса угла преломления есть величина постоянна для данных сред:

где - относительный показатель преломления второй среды относительно первой. Относительный показатель преломления двух сред равен отношению их абсолютных показателей преломления:

Абсолютным показателем преломления среды называют величину , равную отношению скорости с электромагнитными волнами в вакууме к их фазовой скоростив среде

(1.1)

Основные законы были установлены давно, но точка зрения на них менялась на протяжении многих веков.

Так Ньютон придерживал теории истечения световых частиц, которые подчиняются законам механики. Гюйгенс выступал с другой (корпускулярной теорией света) теорией света. Он полагал, что световые возбуждения следует рассматривать как упругие импульсы, распространяется в особой среде – эфир (волновая теория света).

В течении XVIII века корпускулярная теория занимала господствующее положение, хотя борьба обоих теорий не прекращалась.

Затем труды Юнга и Френеля в XIX веке внесли большой вклад и дополнение в волновую оптику. Максвелл на основе своих теоретических исследованиях сформулировал заключение, что свет – это электромагнитная волна. Скорость электромагнитной волны в среде

(1.2)

где - скорость света в вакууме,- скорость в среде, имеющую диэлектрическую проницаемостьи магнитную проницаемость.

Так как , то

(1.3)

(1.3) дает связь между оптическими, электрическими и магнитными константами вещества. Длина волны оптического диапазона . Модуль среднего по времени значения плотности потока энергии, переносимой световой волной носит название интенсивность света.

, .

, .

Линии, вдоль которого распространяется световая энергия, называется лучами. направлен по касательной к лучу. В изотропной среде. Следствием теории Максвелла является поперчнность световых волн: векторы напряженностей электрическогои магнитныхполей взаимно перпендикулярны и колеблются перпендикулярно вектору скоростираспространяющегося луча, т.е. перпендикулярно лучу.

Обычно в оптике все рассуждения ведутся относительно светового вектора – вектора интенсивности электрического поля. Так как при действии света на вещество, основное значение имеет электрическая составляющая поля волны, действующая на электроны в атомах вещества.

Свет представляет собой суммарное электромагнитное излучение множества атомов. Атомы излучают свет волны независимо друг от друга, поэтому световая волна, излучаемая телом в целом характеризуется всевозможным равновероятным колебаниями светового вектора (см. рис. луч перпендикулярный плоскости рисунка).

Свет, со всевозможными равновероятными ориентациями вектора называется естественным. Если есть упорядоченность, то свет называется поляризованным. Если колебание происходят только в одной, проходящей через луч плоскости, свет называется плоско (линейно) поляризованным.

Плоско поляризованный свет является предельным случаем эллиптически поляризованного света – т.е. конец вектора во времени описывает эллипс.

; где - эллиптичность.