Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лабораторная работа № 9.doc
Скачиваний:
204
Добавлен:
21.03.2015
Размер:
4.06 Mб
Скачать

Лабораторная работа № 9. Основы телевидения и видеотехника. Аналоговое и цифровое телевидение

1. Цель работы

Изучить основы аналогового и цифрового телевидения, принцип действия, устройство и условия применения аналоговых и цифровых телевизионных приемников, получить навыки их практического применения.

2. Теоретическая справка Основы телевидения

Все, что мы видим вокруг себя, на самом деле представляет собой отраженные от различных поверхностей окружающих нас предметов лучи света. Отраженный от предмета свет, определенной окраски (спектра) и интенсивности (яркости), несет информацию о нем. Эту информацию можно представлять и передавать в виде электрических сигналов на большие расстояния, так же, как и звук, в виде радиосигналов.

Телевидение– передача на расстояние изображений движущихся и неподвижных объектов с помощью радиоволн или электрических сигналов по кабельным линиям.

Изображение любого объекта образуется из множества отраженных лучей с различными спектрами и интенсивностями. Поэтому потребовалось разработать систему способную преобразовывать изображение объекта в электрический сигнал. В основе современного телевидения лежат принципы разложения изображения объекта на множество элементов, расположенных в строгом порядке и образующих сетку – растр (на рис. 1 показаны результаты передачи изображения объекта при разложении его на различное число элементов). Преобразование светового потока от каждого элемента в электрические сигналы, пропорциональные яркости, передача их в эфир и обратное преобразование сигналов в изображение объекта. Из рисунка 1 следует, что четкость воспроизводимого изображения и приближение его к оригиналу тем выше, чем больше элементов разложения. Для нашего глаза вполне приемлемо, если изображение разложено на 450–500 тыс. элементов. Для адекватного воспроизведения сцены используется большое число строк. Например, в системах телевидения PALиSECAMиспользуется 625, вNTSC– 525 строк. Аналоговые телевизионные экраны имеют форматное отношение (отношение ширины к высоте) 4:3. Таким образом, число элементов по горизонтали увеличивается до 625∙4/3=833,3 элементов на строку, а все изображение будет содержать 625∙625∙4/3=520833 элементов.

Рис. 1. Разложение объекта при телепередаче на составные элементы: а – на 80; б – на 320; в – на 1280; г – исходное изображение

Совокупность всех элементов изображения, образующая полную картинку на экране телевизора, называется кадром. В секунду формируется 25 кадров изображения. Исторически сложилось, что частота формирования кадров выбрана кратной частоте электрической сети. Поэтому в странах, где частота электрической сети составляет 60 Гц, используются стандарты с формированием 30 кадров в секунду. Быстрая смена изменяющихся кадров воспринимается телезрителем как непрерывное, движущееся изображение благодаря инерционному свойству зрительного анализатора человека («память зрения» – способность зрительного анализатора человека сохранять в своей памяти зрительное впечатление от изображения после его удаления с экрана в течение ~ 0,1 сек.), так как это происходит в кинематографе.

В телевизионной студии передаваемая сцена в видеокамере построчно преобразуется в электрические сигналы, характеризующие яркость и цвет элементов объекта съемки, называемые сигналами яркости и цветности. Эти сигналы определенным образом объединяются. К ним добавляются сигналы, определяющие начало кадра, начало строки и некоторые другие, вместе называемые сигналами синхронизации. Видеоинформация и импульсы синхронизации составляют полный видеосигнал.

Передача телевизионного изображения по элементам называется разверткой изображения, а последовательность передачи элементов способом развертки. Развертка бывает построчная и чересстрочная.

При построчном способе развертки фиксируется яркость каждого элемента строка за строкой (рис. 2). Электронный луч пробегает по сцене слева направо (развертывание), быстро возвращается назад (обратный ход), начинает сканирование следующей строки и т.д.

Рис. 2. Телевизионная строчная развертка

По завершении каждого полного цикла сканирования электронный луч возвращается к верхней строке изображения, и последовательность его движения повторяется.

Движение луча по вертикали называется кадровой разверткой. Для верного воспроизведения изображения, развертка на приемной стороне должна в точности повторять развертку на передающей стороне, строка за строкой и полукадр за полукадром. Чтобы обеспечить такое соответствие, в конце каждой строки вводятся импульсы синхронизации для инициирования обратного хода луча в приемнике, эти импульсы называются импульсами строчной синхронизации. В конце полукадра (поля) вводятся другие импульсы синхронизации для инициирования обратного хода луча полукадра, эти импульсы называются импульсами кадровой синхронизации.

Обычная последовательная развертка, т.е. сканирование всей картинки (625 строк) за один проход и затем переход к сканированию следующей картинки, обладает нежелательным эффектом мерцания. Чтобы уменьшить эффект мерцания яркости экрана применяется чересстрочная развертка. Чересстрочная развертка заключается в сканировании сначала нечетных строк 1, 3, 5 и т.д. и затем четных строк 2, 4, 6 и т.д. За один проход развертывается только половина кадра – полукадр (поле). Полная картинка состоит, таким образом, из двух полукадров, нечетного и четного. Частота полукадров составляет 2∙25 кадров/сек.=50 полукадров/сек. Вследствие инерционности зрения человека это делает мерцание изображения менее заметным.

В последние годы в телевизорах с цифровой обработкой телевизионного сигнала все шире применяется технология 100 Гц. Кадр изображения переводится в цифровую форму и запоминается в соответствующей микросхеме памяти и выводится на экран с удвоенной частотой. В этом случае частота смены полукадров составляет уже не 50, а 100 Гц, что делает мерцание изображения на экране менее заметным, особенно при больших экранах телевизора (более 54 см) и значительно снижает утомляемость глаз при длительном просмотре передач.

Когда разрабатывались системы цветного телевидения, черно-белое телевидение уже существовало. Поэтому основные требования к ним сводились к совместимости с системой черно-белого телевидения и высокому качеству цветовоспроизведения.

Совместимость означает необходимость передачи информации о цвете в том же канале связи и в той же полосе частот, которая уже отведена для черно-белого телевизионного вещания. Под совместимостью системы цветного телевидения с черно-белой следует понимать свойство системы обеспечивать качественный прием программ цветного телевидения в черно-белом виде всеми типами существующих на то время черно-белых телевизоров без каких-либо переделок – условие «прямой совместимости».

С другой стороны, приемник цветного телевидения также без всяких переделок должен принимать без какой либо окраски обычные черно-белые программы – условие «обратной совместимости». Выполнение условий прямой и обратной совместимости имело большое значение для всех стран, где уже широко было развито телевизионное вещание.

Основное снижение объема информации в цветном телевидении достигается за счет передачи ограниченного числа насыщенных цветовых тонов, что оказалось возможным благодаря особому свойству цветового зрения, известному под названием трехкомпонентности цветовосприятия.

Правильно выбрав три основных источника цвета и смешав их в определенных пропорциях, можно получить любой из наблюдаемых человеком цветовых оттенков. Следовательно, по телевизионному каналу достаточно передать информацию только о количественном соотношении трех основных цветов в любой момент времени.

Передача цвета заключается в одновременной передаче яркостных и цветовых составляющих цветного изображения. Сигнал яркости Y передается точно так же, как в черно-белом телевидении. Что касается цветовой составляющей, то она сначала «очищается» удалением яркостной составляющей из каждого основного цвета; в результате получаются так называемые цветоразностные сигналы:

R – Y, G – Y, В – Y.

Поскольку сигнал яркости есть Y = R + G + В, нужно передавать только два цветоразностных сигнала R – Y и В – Y. Третий цветоразностный сигнал G – Y можно восстановить на приемной стороне по трем переданным составляющим Y, R – Y и В – Y. Учитывая, что Y = R + G + В, получим

R = (R–Y) + Y, B = (B–Y) + Y, G = Y–R-B.

Сигнал цветностии несет информацию об интенсивности этих трех составляющих. Способ передачи цветовой составляющей в телевизионном сигнале определяется используемойсистемой цветного телевидения.

Сигналы цветности, яркости и синхронизации вместе образуют так называемый полный цветовой телевизионный сигнал. При передаче черно-белых изображений составляющая цветности отсутствует. В этом случае сигнал называютполным телевизионным сигналом. Часто сигналы ПЦТС и ПТС называют простовидеосигналами.

Видеосигналы ПЦТС и ПТС являются совместимыми. Это означает, что и цветной, и черно-белый телевизоры могут воспроизводить как черно-белые, так и цветные телепередачи.

Одновременно со съемкой изображения, с помощью микрофона (или нескольких микрофонов, при стерео или многоканальном звуке) происходит формирование сигнала звукового сопровождения, называемого также аудиосигналом.