Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Молекулярная биология клетки. Том 1

.pdf
Скачиваний:
470
Добавлен:
20.03.2015
Размер:
26.84 Mб
Скачать

331

10-5

5.6.4. Библиотеки кДНК могут быть получены из отобранных популяций молекул мРНК [58]

Если кДНК получают из клеток, в которых уровень экспрессии интересующего нас гена очень высок, то большинство клонов кДНК содержит нуклеотидную последовательность этого гена, и, значит, отбор его не представляет трудностей. Для генов, транскрибируемых не столь интенсивно, необходимы какие-то приемы, которые позволили бы обогатить имеющуюся смесь молекул мРНК нужным ее видом и лишь после этого приступать к получению библиотеки кДНК. Если, например, в нашем распоряжении имеются антитела к данному белку, то ими можно воспользоваться для избирательного осаждения тех изолированных полирибосом, которые содержат его растущие полипептидные цепи. В этих рибосомах будет находиться также и мРНК, кодирующая данный белок, вследствие чего преципитат может быть обогащен интересующей нас мРНК иногда в 1000 раз.

Субтрактивная гибридизация представляет собой еще один высокоэффективный метод для обогащения смеси молекул определенными нуклеотидными последовательностями перед клонированием кДНК. Эту процедуру отбора можно использовать, например, в том случае, если имеются два типа клеток от одного и того же вида организма, очень близких, но отличающихся тем, что лишь один из них продуцирует интересующий нас белок (или белки). Впервые этот метод был применен для идентификации рецепторных белков, имеющихся на поверхности у Т- лимфоцитов, но отсутствующих у В-лимфоцитов. Его можно использовать и в том случае, если у клетки, вырабатывающей определенный белок, имеется мутантный двойник, лишенный такой способности. На первом этапе требуется осуществить синтез кДНК, используя для этого мРНК из того типа клеток, который вырабатывает нужный белок. Затем проводят гибридизацию этих кДНК с молекулами мРНК из клеток второго типа, добавленными в большом избытке. При этом небольшая часть нуклеотидных последовательностей кДНК не находит себе партнера, т.е. комплементарной последовательности мРНК. Очевидно, что именно эти немногие последовательности кДНК соответствуют последовательностям мРНК, имеющимся только у клеток первого типа. Их можно подвергнуть очистке, воспользовавшись для этого простой биохимической процедурой, дающей возможность отделить одноцепочечные нуклеиновые кислоты от двухцепочечных (рис. 5-82). Библиотеки кДНК, полученные путем субтрактивной гибридизации, удобны не только для клонирования тех генов, продукты которых приурочены к определенному типу дифференцированных клеток; они позволяют также определять различия в экспрессии генов между любыми двумя близкими типами клеток.

5-52

5.6.5. Для выявления нужных клонов в генной библиотеке можно использовать гибридизацию с радиоактивным ДНК-зондом [59]

При клонировании генов самой трудной задачей является распознавание в библиотеке тех редких колоний, которые содержат интересующий нас фрагмент ДНК. Это особенно справедливо в отношении геномной библиотеки, так как здесь, для того чтобы выделить нужный ген млекопитающего, приходится среди миллиона клеток разыскивать какую-нибудь одну. Чаще всего для этой цели пользуются особой формой гибридизации in situ, основанной на высокой специфичности

332

Рис. 5-83. Эффективный метод, широко применяемый для выявления бактериальной колонии, содержащей определенный клон ДНК (см. также рис. 5-79). Каждая бактериальная клетка, несущая рекомбинантную плазмиду, дает начало колонии из идентичных клеток, которая на питательном агаре выглядит как белое пятнышко. Прижимая к поверхности чашки кружок из фильтровальной бумаги, получают реплику бактериальной культуры.

Эту реплику обрабатывают щелочью, чтобы разрушить прилипшие к бумаге клетки и денатурировать плазмидную ДНК, а затем проводят гибридизацию с высокорадиоактивным ДНК-зондом. Колонии бактерий, связавшие ДНК-зонд, выявляют методом радиоавтографии.

комплементарных взаимодействий между двумя комплементарными молекулами нуклеиновых кислот. Растущие на чашках колонии бактерий промакивают куском фильтровальной бумаги. При этом часть клеток от каждой колонии прилипает к бумаге. Это прилипшие колонии - их называют репликами - обрабатывают щелочью, а затем инкубируют с радиоактивным ДНК-зондом, содержащим часть нуклеотидной последовательности искомого гена (рис. 5-83). При необходимости такому

Рис. 5-84. Выбор участков с известной аминокислотной последовательностью для приготовления синтетических олигонуклеотидных зондов. В действительности кодирует данный белок только одна какая-то нуклеотидная последовательность. Однако вследствие вырожденности генетического кода несколько разных нуклеотидных последовательностей могут дать одну и ту же аминокислотную последовательность, так что нельзя заранее сказать, какая из них окажется правильной. Желательно, чтобы в смеси олигонуклеотидов, используемых в качестве зонда, правильная нуклеотидная последовательность составляла наибольшую фракцию, поэтому выбирают участки, для которых число возможностей минимально, как это видно на рисунке. После того как смесь олигонуклеотидов будет синтезирована химическим путем, 5'-конец каждого олигонуклеотида метят радиоактивной меткой (см. рис. 4-65, Б).

333

скринингу можно подвергнуть миллионы бактериальных клонов, для того чтобы выявить тот клон, который способен к гибридизации с данным зондом.

Способ получения специфического ДНК-зонда зависит от той информации, которой мы располагаем в отношении клонируемого гена. Во многих случаях интересующий нас белок можно идентифицировать химическими методами и выделить хотя бы в малых количествах в очищенном виде. Нескольких микрограмм чистого белка достаточно для того, чтобы определить последовательность первых трех десятков аминокислот в его молекуле. Из этой аминокислотной последовательности на основе генетического кода можно вывести соответствующую нуклеотидную последовательность. Получив эти данные, синтезируют химическим путем два набора олигонуклеотидов ДНК, каждый длиной приблизительно 20 нуклеотидов, и вводят в них радиоактивную метку. Два набора используют в расчете обеспечить соответствие двум разным участкам предсказанной нуклеотидной последовательности клонируемого гена (рис. 5-84). Колонии клеток, обнаружившие способность к гибридизации с обоими наборами ДНК-зондов, скорее всего содержат требуемый ген; поэтому именно их сохраняют для дальнейшего исследования (см. ниже).

5.6.6. Выделение перекрывающихся клонов ДНК («прогулка по хромосоме») позволяет идентифицировать ген, находящийся по соседству с тем, который уже клонирован [60]

Многие гены из числа тех, что представляют наибольший интерес (например гены, регулирующие развитие), известны нам только из генетического анализа мутантов у таких организмов, как плодовая мушка Drosophila или нематода С. elegans. Белковые продукты этих генов не выделены; возможно, что они присутствуют лишь на какой-то определенной стадии развития. Тем не менее, изучая генетическое сцепление различных мутаций, можно составлять хромосомные карты, дающие представление об относительном расположении этих генов. Если один из картированных таким образом генов удалось клонировать, то клоны в библиотеке геномной ДНК, соответствующие соседним генам, можно идентифицировать при помощи методики, известной как «прогулка по хромосоме». Для этого используют две разные библиотеки геномной ДНК, полученные из одной и той же ДНК путем разделения ее на фрагменты двумя разными рестрицирующими нуклеазами. Рис. 5-85 показывает, как клон одной из библиотек может служить ДНК-зондом для выявления перекрывающегося клона другой библиотеки. Из этого нового клона получают затем ДНК-зонд, используемый для нахождения другого перекрывающегося клона в первой библиотеке, и т.д. Таким путем, отыскивая клон за клоном, можно продвигаться по хромосоме всякий раз на расстояние порядка 30000 пар нуклеотидов и более. Как узнать, однако, когда мы, наконец, дойдем до интересующего нас гена (идентифицированного изначально по какой-нибудь вредной мутации)? Обычный прием состоит в том, чтобы непрерывно сравнивать размеры рестрикционных фрагментов ДНК мутантных и нормальных хромосом посредством блот-анализа по Саузерну, используя в процессе «прогулки» в качестве зонда каждый новый клон. Некоторые из мутантов возникают вследствие небольших делеций или, наоборот, вставок последовательностей ДНК в соответствующем гене, и определить такие нарушения, как правило, бывает нетрудно. Известно, например, что среди вредных мутаций, затрагивающих типичный ген человека, примерно одна из десяти представляет собой делецию, легко обнаруживаемую блот-ана-

334

Рис. 5-85. Использование перекрывающихся фрагментов для картирования интересующего нас гена путем «прогулки по хромосоме». Для того чтобы сократить время «прогулки», наиболее пригодны геномные библиотеки, содержащие очень крупные клонированные молекулы ДНК. Зондом для каждого следующего клона служит короткий 32Р-фрагмент ДНК одного из концов предыдущего идентифицированного клона. Если, например, используется «правый» конец, то и перемещение происходит «вправо», как в случае, представленном на этом рисунке. Короткий концевой фрагмент удобен в качестве зонда еще и потому, что это снижает вероятность присутствия в зонде повторяющейся последовательности ДНК, которая могла бы гибридизоваться со многими клонами из разных частей генома и тем самым прервать «прогулку».

лизом по Саузерну. Число выявленных таким путем молекулярных дефектов, ответственных за наследственные болезни человека, в последнее время непрерывно растет.

С помощью сходных методов можно расположить в правильном порядке (картировать) в хромосомах С. elegans почти весь набор крупных геномных клонов. Такие крупные клоны, каждый примерно по 30000 п.н., вводят в специальные векторы, приготовленные на основе фага λ, так называемые космиды, пригодные для включения больших вставок ДНК. Нескольких тысяч космидных клонов достаточно для того, чтобы охватить весь геном такого организма, как С. elegans или Drosophila, а чтобы картировать таким способом геном человека, необходимо более 100000 космидных клонов. Эта процедура заняла бы, конечно, очень много времени, но технически она выполнима. Кроме того, фрагменты ДНК человека, в 10 раз более крупные, чем космидные клоны (300000 п. н.), можно клонировать, как искусственные хромосомы в дрожжевых клетках; в принципе геном человека можно было бы картировать с помощью 10000 клонов такого типа (см. рис. 9-5).

335

Рис. 5-86. Методика гибридизационной селекции. Молекулы очищенной мРНК элюируются с фильтра в условиях, вызывающих разделение РНК- ДНК-спирали на одиночные цепи.

В недалеком будущем исследователи, несомненно, получат возможность приобретать систематизированные наборы геномных клонов в специальных центрах, располагающих библиотеками ДНК. Там можно будет получить полную библиотеку для всякого обычного объекта исследования с указанием в каталогах для каждой вставки ДНК как хромосомы, из которой она взята, так и ее порядкового номера относительно всех других фрагментов ДНК, происходящих из той же хромосомы. Тогда начать «прогулку по хромосоме» можно будет просто, получив из библиотеки все клоны, охватывающие тот ее участок, в котором содержится интересующий исследователя мутантный ген. Эти клоны послужат затем для приготовления ДНК-зондов, которые позволят точно локализовать измененный ген. В конце концов таким путем удастся выделить многие из мутантных генов, обусловливающих наследственные заболевания у человека.

5.6.7. Трансляция in vitro облегчает идентификацию надлежащего клона ДНК [61]

Выделение клонов геномной ДНК и кДНК методом гибридизации in situ при всей своей эффективности не вполне удобно тем, что в таких экспериментах отбирается обычно немало и «псевдоположительных» клонов. Требуются дополнительные приемы для того, чтобы отличить их от подлинных. Задача облегчается, если требуемый клон кодирует какой-нибудь белок, ранее уже охарактеризованный иными методами. В этом случае каждый подлежащий проверке клонированный фрагмент ДНК используют для отбора комплементарных ему молекул мРНК из смеси клеточных мРНК посредством процесса, называемого гибридизационной селекцией; при этом избыток данного фрагмента ДНК расщепляют на одиночные цепи, иммобилизуют на фильтре и наносят на этот фильтр смесь мРНК, чтобы отобрать комплементарные молекулы мРНК путем РНК- ДНК-гибридизации (рис. 5-86). Очищенную таким способом мРНК используют затем для синтеза белка в бесклеточной системе, содержащей радиоактивные аминокислоты. Полученный радиоактивный белок исследуют и сравнивают с белковым продуктом, который, согласно ожиданиям, должен быть получен от данного клона. Совпадение их характеристик служит обычно в таком тесте основанием для вывода, что клонируемый фрагмент ДНК кодирует данный белок.

5.6.8. Экспрессирующие векторы могут быть использованы для сверхпродукции белков [62]

Очень часто никаких биохимических данных относительно белка, кодируемого тем или иным клонированным фрагментом ДНК, не имеется. Именно так, например, обстоит дело в тех случаях, когда клон, о котором идет речь, был идентифицирован посредством субтрактивной гибридизации или же в результате «прогулки по хромосоме» до соответствующего мутантного гена. Более того, в таких случаях мРНК, кодирующая этот белок, часто присутствует в столь малых количествах или же в столь немногих клетках, что гибридизационная селекция комплементарной мРНК оказывается неосуществимой. При этом приходится прибегать к другим методам, которые дают возможность охарактеризовать белковый продукт клонированного гена. Один из методов состоит в том, чтобы синтезировать короткий фрагмент белка (олигопептид), соответствующий выведенной аминокислотной последовательности белкового продукта секвенированной молекулы кДНК, а затем получить антитела к этому олигопептиду. Эти антитела во многих случаях будут распознавать ту же аминокислотную последова-

336

тельность в составе природного белка, что даст возможность обнаруживать, локализовать и подвергать очистке белок, кодируемый исходной кДНК. Такой иммунологический подход в сочетании с клонированием путем субтрактивной гибридизации эффективен и как способ идентификации белков, специфичных для определенного типа клеток, и как путь к изучению характера дифференцировки, а также свойств и функций каждого типа клеток в многоклеточном организме.

Однако самый простой путь, позволяющий охарактеризовать белок, закодированный в какой-нибудь клонированной кДНК, заключается в том, чтобы заставить саму эту кДНК направлять синтез белка в клетке-хозяине. Плазмиды или вирусы выступают в таких случаях в качестве экспрессирующих векторов; их конструируют с таким расчетом, чтобы присоединить клонированную кДНК к той последовательности, которая служит сильным промотором для транскрипции. Исследователи располагают достаточно широким набором экспрессирующих векторов - каждый из них приспособлен для функционирования в клетках того типа, в которых должен синтезироваться данный белок. С помощью этого генноинженерного подхода клетки бактерий, дрожжей и млекопитающих можно заставить вырабатывать большие количества различных ценных белков, таких, как гормон роста человека, интерферон или антитела к вирусам, используемые для приготовления вакцин. Особенно удобны для получения белка бактериальные клетки с плазмидными или вирусными векторами, сконструированными подобным образом; встроенный чужеродный ген обеспечивает нередко свыше 10% от всего синтезируемого клеткой белка. Для клетки синтез такого большого количества какогонибудь белка оказывается часто непомерной метаболической нагрузкой; поэтому предложены особые «индуцибельные» промоторы, с помощью которых запуск транскрипции можно осуществлять лишь за несколько часов до сбора клеток для выделения из них белка. Некоторые плазмидные экспрессирующие векторы содержат, например, промотор, полученный из бактериофага λ. Работа его регулируется температурочувствительным белковым продуктом генарепрессора; повысив температуру бактериальных клеток до 42°С, можно в любой момент «включить» промотор и быстро получить большое количество требуемого белка.

Если библиотека кДНК создана в экспрессирующем векторе, то каждый клон будет продуцировать особый белок и тогда представляющие интерес клоны можно идентифицировать не по их нуклеотидной последовательности, а по их белковым продуктам. При этом в качестве зонда для клонов обычно применяют радиоактивно меченные антитела. Иногда вместо этого можно провести прямой тест, выявляющий биологическую активность продукта данного гена. Особенно эффективен этот метод при поисках эукариотических генов, ответственных за секретируемые факторы роста. Можно, например, клоны кДНК из клеток, вырабатывающих определенный фактор роста, ввести в

экспрессирующий вектор, размножающийся в клетках млекопитающих. Смесь трансфицированных клеток, содержащих много таких различных клонов, выращивают на небольшой чашке, где каждая клетка, в которой экспрессируется данный ген, выделяет этот фактор роста в среду. Затем пробы среды испытывают на присутствие данного фактора роста, добавляя их к культурам других клеток, способных реагировать на этот фактор. Тест отличается настолько высокой чувствительностью, что положительный ответ получают даже в том случае, когда в исходной культуре одна клетка из тысячи содержит ген, кодирующий данный фактор роста. Повторное тестирование позволяет отыскать в смеси тот единственный клон, который продуцирует этот фактор. Таким способом удалось открыть ранее неизвестные факторы роста и выделить их за

337

срок, не превышавший нескольких месяцев; если бы процедуру вели обычными биохимическими методами, то для очистки в миллион с лишним раз потребовалась бы чрезвычайно кропотливая работа, которая длилась бы годы.

5-53

5.6.9. Гены можно «перестраивать» и таким путем получать белки с желаемой аминокислотной последовательностью [63]

Перестраивая кодирующую последовательность и регуляторные участки гена, можно изменять функциональные свойства его белкового продукта, количество синтезируемого белка и, наконец, менять тип клеток, способных вырабатывать данный белок.

Вкодирующую последовательность можно вносить весьма существенные изменения, например, можно «пришивать» какую-нибудь ее часть к другому гену, что даст в результате новый гибридный ген, кодирующий комбинированный (составной) белок (fusion protein). Подобные белки часто используются для выявления функций различных доменов белковой молекулы. Известно, например, что большинство ядерных белков содержит особые короткие аминокислотные последовательности, которые распознаются как сигнал для немедленного импорта этих белков в клеточное ядро. Присоединяя искусственно - методом слияния генов - к какому-нибудь цитоплазматическому белку различные части молекулы ядерных белков, можно идентифицировать эти «сигнальные пептиды», ответственные за импорт в ядро.

Для более тонкой структурной реорганизации гена (результатом которой является замена одной или нескольких аминокислот в кодируемом белке) требуются специальные методы. Сначала химическим путем синтезируют небольшую молекулу ДНК, содержащую измененную часть нуклеотидной последовательности данного гена. Затем этот синтетический олигонуклеотид гибридизуют с одноцепочечной плазмидой ДНК,

всоставе которой присутствует последовательность ДНК, подлежащая изменению; гибридизацию ведут в условиях, допускающих спаривание не вполне подходящих партнеров (рис. 5-87). Синтетический олигонуклеотид становится затравкой для ДНК-полимеразы, осуществляющей синтез ДНК, в результате которого образуется молекула, содержащая ген с встроенной в него измененной последовательностью. После этого модифицированный ген включают в экспрессирующий вектор, что позволяет получить измененный белок в достаточном количестве для детального изучения. Заменяя таким путем те или иные аминокислоты в молекуле интересующего нас белка, можно выяснить, какие именно части полипептидной цепи ответственны за такие фундаментальные процессы, как свертывание белка, взаимодействие белка с лигандом или ферментативный катализ.

Втех случаях, когда требуется определить, какая именно часть эукариотического гена ответственна за регулирование его экспрессии, предполагаемые регуляторные последовательности ДНК этого гена можно присоединить к кодирующей последовательности другого гена, выбранного с таким расчетом, чтобы в нем был закодирован какой-нибудь легко обнаруживаемый фермент-маркер, в норме в эукариотических клетках отсутствующий. Чаще всего в качестве такого фермента-маркера используется бактериальный белок хлорамфеникол-ацетил-трансфераза (ХАТ). Полученную рекомбинантную молекулу ДНК вводят в эукариотическую клетку, чтобы выяснить, действительно ли предполагаемые регуляторные последовательности стимулируют экспрессию гена ХАТ. Проще всего сделать это, если трансфицировать

338

Рис. 5-87. Использование синтетических олигонуклеотидов для изменения отдельных кодирующих участков гена. Здесь приведены лишь два примера из многих возможных типов таких изменений. С помощью подходящего олигонуклеотида можно, например, заменить одновременно не одну, а несколько аминокислот, можно также вызвать выпадение одной или нескольких аминокислот. Из схемы ясно, что при такой процедуре в исходной рекомбинантной плазмиде изменяется только одна из двух цепей ДНК, так что после репликации лишь половина всех трансфицированных клеток содержит плазмиду с нужным мутантным геном. Здесь указана лишь небольшая часть всей плазмидной последовательности.

клетки в культуре и затем после инкубации в течение ночи исследовать их на хлорамфеникол-ацетилтрансферазную активность. Среди трансфицированных клеток многие в течение некоторого времени экспрессируют чужеродный ген, но лишь очень небольшое число клеток удерживает этот ген надолго. Чтобы добиться устойчивой трансформации, надо произвести отбор тех редких клеточных клонов, у которых рекомбинантные молекулы ДНК включились в их хромосомы. Трансфицируя различные типы клеток такими рекомбинантными молекулами ДНК, удается определять те регуляторные последовательности ДНК, которые позволяют данному гену экспрессироваться в одних клетках и не экспрессироваться в других (разд. 10.2.8).

5.6.10. Сконструированные гены можно ввести в половые клетки мыши или плодовой мушки и получить трансгенные организмы [64]

Для выявления функции измененного белка, необходимо ввести этот ген в организм и проследить, каков будет эффект. В идеале желательно заменить нормальный ген измененным, с тем чтобы действие мутантного белка можно было наблюдать в условиях, когда нормальный белок отсутствует. Единственный эукариотический организм, с которым такую процедуру можно проделать относительно легко, - это дрожжи. Фрагменты ДНК, введенные в растущие дрожжевые клетки, достаточно эффективно включаются в виде одиночных копий в гомологичные участки хромосом путем общей рекомбинации, так что на место эндогенной копии данного гена становится сконструированный ген. Это

339

открывает широкие возможности для изучения функций различных генов у дрожжей (см. разд. 4.6.15).

Иначе обстоит дело с клетками млекопитающих. Здесь мы пока не в состоянии установить, как и куда включилась в хромосому введенная в клетку ДНК. В среднем лишь один акт интеграции на тысячу приводит к замене одного гена другим. Вместо этого клеточные ферменты быстро сшивают линейные фрагменты ДНК конец-в-конец и такой длинный тандем обычно включается в хромосому в каких-то, по-видимому, случайных, участках. Оплодотворенные яйца млекопитающих ведут себя в этом отношении так же, как и прочие клетки млекопитающих. Если ввести в яйцо мыши 200 копий линейной молекулы ДНК, то часто из него развивается мышь, у которой в одну из ее хромосом в случайном участке интегрированы эти тандемно повторяющиеся копии введенного гена (рис. 5-88). В том случае, когда модифицированная хромосома присутствует и

вполовых клетках (яйцеклетках или сперматозоидах), мышь передаст эти новые полученные ею гены своему потомству; животные с таким устойчивым изменением называются трансгенными. Поскольку нормальный ген у них, как правило, сохраняется, трансгенные животные по большей части непригодны для столь убедительной, как у дрожжей, демонстрации эффектов, связанных с изменением гена; однако с их помощью были уже получены важные сведения о том, как осуществляется регуляция генов млекопитающих (см. стр. 10.3.11) и каким образом некоторые гены (их называют онкогенами) обусловливают возникновение рака (см. разд. 21.2.5).

Сходные эксперименты можно проводить с плодовой мушкой Drosophila, используя для этого методику, дающую возможность включать

вгеном мухи в каком-либо случайном его участке одну копию любого интересующего нас гена. Главная задача состоит здесь в том, чтобы встроить фрагмент ДНК, о котором идет речь, между двумя концевыми последовательностями определенного мобильного элемента Drosophila, так называемого Р-элемента. Эти концевые последовательности позволяют Р-элементу включаться в хромосомы Drosophila, если в клетке присутствует также особый фермент, катализирующий это включение (Р-элемент-транспозаза; см. разд. 5.5.10). Поэтому, для того чтобы получить трансгенных плодовых мушек, требуется инъецировать соответствующим образом модифицированный фрагмент ДНК в эмбрион мухи на одной из очень ранних стадий развития и одновременно ввести туда же отдельную плазмиду, содержащую ген транспозазы. В этом случае инъецированный ген в виде одиночной копии часто попадает (вследствие транспозиции) в клетки зародышевого пути (рис. 5-88).

Недавно у мышей удалось осуществить замену гена косвенным, достаточно трудоемким путем. Процедура сводится к следующему. Сначала фрагмент ДНК, содержащий нужный мутантный ген, вводят путем трансфекции в специальную линию плюрипотентных стволовых клеток, выделенных из эмбриона и выращиваемых в культуре. Клеткам дают возможность размножаться в течение некоторого времени, после чего методом блот-анализа по Саузерну выявляют редкие колонии, в которых общая рекомбинация привела к замене гена, и отдельные клетки из этих колоний имплантируют в ранний эмбрион мыши. В этой новой для них среде выделенные из эмбриона стволовые клетки часто пролиферируют, образуя крупные участки в теле нормальной мыши. Мышей, у которых произошла замена гена в клетках зародышевого пути, скрещивают, чтобы получить самца и самку, которые окажутся гетерозиготными по этому признаку (т. е. будут иметь одну нормальную и одну мутантную копию данного гена). Если теперь скрестить этих животных, то одна четвертая часть их потомства будет гомозиготной по

340

Рис. 5-88. Сравнение стандартных процедур, используемых для получения трансгенной мыши и трансгенной плодовой мушки. В этих примерах ген, введенный в яйцо мыши, вызывает изменение окраски шерсти, а ген, введенный в эмбрион плодовой мушки, - изменение цвета глаз. В обоих случаях у части трансгенных организмов вставки ДНК обнаружены не в одном, а в нескольких участках хромосомы.

измененному гену. Изучение таких гомозигот позволит наблюдать функцию измененного гена в отсутствие его нормального аллеля.

Возможность получения трансгенных мышей и дрозофил дает в руки исследователей новый мощный инструмент для изучения функции генов в интактном организме.