Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

4 курс / Общая токсикология (доп.) / Военная_токсикология_Учебник_Яскевич_В_П_,_Динмухаметов_А_Г_2000

.pdf
Скачиваний:
7
Добавлен:
24.03.2024
Размер:
901.81 Кб
Скачать

В настоящее время синильная кислота состоит на вооружении стран НАТО под шифром АС, является ограниченно табельным. Современные средства доставки ОВ дают возможность создать боевую концентрацию хотя бы на короткое время. Сейчас она привлекает к себе специалистов своей дешевизной производства. Таким образом, возможность поражения людей в мирное, и массовое поражение в военное время диктует необходимость изучения данной темы в медицинском вузе.

Токсикологическая (клиническая) классификация ядов

Наименова-

Отравля-

 

Ядохимикаты и

 

Лекарствен-

ние группы

ющие веще

промышленные яды

ные средства

ядов

ства

 

 

 

 

 

Общетокси-

Синильная

Цианиды натрия и ка-

Амигдалин.

ческие (вы-

кислота,

лия, цианоплав, циана-

 

 

зывают ги-

хлорциан

мид кальция.

 

 

поксические

 

Нитрогазы, анилин,

Амилнитрит,

судороги и

 

угарный газ, карбони-

пропилнитрит,

параличи)

 

ды металлов.

азотистокис-

 

 

 

Ядовитые спирты, гид-

лый натрий

 

 

 

разины,

тетраэтилсви-

 

 

 

 

 

нец

 

 

 

 

------------------------------------

 

 

 

 

 

 

 

 

 

 

 

Наименование

 

Синильная кислота

 

Хлорциан (С К)

 

 

(шифр ОВ)

 

 

(АС)

 

 

 

 

 

 

 

Химическое название

карбонитрид водорода

хлористый нитрил

 

 

 

 

 

 

 

Агрегатное

 

жидкость с миндаль-

 

жидкость с миндаль-

 

состояние

 

ным запахом

 

ным запахом

 

 

 

 

 

 

 

 

Молекулярный вес

 

 

27,4

 

61,48

 

 

 

 

 

 

 

 

Т кипения

 

 

+25,7°

 

+12,6°

 

 

 

 

 

 

 

 

Удельный вес

 

 

0,7

 

1,2

 

 

 

 

 

 

 

Плотность по воздуху

 

0,93

 

2,1

 

 

 

 

 

 

 

 

Летучесть

 

 

873,0 мг/л

 

3300,0 мг/л

 

 

 

 

 

 

 

Стойкость на мест-

 

0,01 сутки

 

0,02 суток

 

ности при стандарт-

 

 

 

 

 

ных условиях

 

 

 

 

 

 

 

 

 

 

 

Растворимость

 

в жирах, липидах, орг.

в жирах, липидах

 

 

 

 

растворителях, воде

 

100%, в воде до 7%

 

 

 

 

100%

 

 

 

 

 

 

 

 

Пути поступления в

ингаляционный, энте-

 

ингаляционный

 

организм

 

ральный, перкутанный

 

 

 

 

 

 

 

 

Дегазация, какими

 

смесь (2:1) 10% р-р

 

то же

 

растворами прово-

 

железного купороса и

 

 

дится

 

10% гашеной извести,

 

 

 

 

 

формалин

 

 

 

 

 

 

 

 

 

 

Токсичность

 

CL50

= 1,0 мг мин/п

 

CL50 = 11,0 мг мин/л

 

 

 

 

DL50

= 1,0 мг/кг

 

 

Физико-химические свойства и токсичность БОВ

(основные представители)

------------------------------------

С водой, спиртом, хлороформом синильная кислота смешивается в любых соотношениях. Активированный уголь плохо сорбирует пары синильной кислоты, зато другие материалы сорбируют хорошо, так шерсть поглощает —74,7 мг, 100 гр. соломы поглощает— 126 мг. На металлы синильная кислота не действует. Синильная кислота может заражать воздух, пищу. Зажженная на воздухе, она горит красно-голубым огнем. Синильная кислота взрывоопасна, 6-10% синильной кислоты и воздуха могут взрываться. По силе взрыва превосходит тротил. Хранение должно производиться с осторожностью, для предотвращения взрыва добавляют стабилизаторы: серная кислота, соляная, хлористый кальций, хлорпикрин, добавляют 2% от веса запасов синильной кислоты. При хранении в жидком состоянии она разлагается с образованием аммиака, муравьиной и щавелевой кислот и бурых нерастворимых веществ. Поэтому синильная кислота не может храниться долгое время, как например хлор или фосген, и снаряды наполненные ею, уже через несколько дней теряют токсичность. Разложения не происходит, если синильная кислота растворена в кислых жидкостях и если к ней прибавлены указанные стабилизаторы.

Синильная кислота как химическое соединение известно в двух таутомерных формах, в которых углерод может быть четырех и двухвалентным:

H _ C є N = H _ N = C

Первое соединение называется цианистой кислотой и представляет собой основную часть /99,5%/. Второе вещество — изоцианистая кислота, которая более токсична, чем цианистая кислота.

Синильная кислота очень слабая, из ее солей она может быть вытеснена даже угольной кислотой.

KCN + H2CO3 ® KHCO3 + HCN ­

Из реакций синильной кислоты с органическими соединениями наиболее важной является присоединение се к карбонильным соединениям с образованием циангидритов.

Синильная кислота образует соли: цианид калия, цианид натрия. Все цианиды при хранении представляют опасность, т.е. легко вытесняются углекислым газом и парами воды, содержащимися в воздухе, с образованием синильной кислоты:

KCN + H2CO3 ® KHCO3 + HCN ­

Обезвреживание синильной кислоты и ее солей достигается путем образования в щелочной среде прочных комплексных солей с солями тяжелых металлов:

6 NaCN + FeSO4 ® Na4[Fe(CN)6] + Na2SO4

Для обезвреживания солей синильной кислоты готовят смесь /2:1/ из 10% раствора железного купороса и 10% гашеной извести. В качестве дегазатора может быть использован формалин.

При замещении атома водорода галоидом образуются токсичные галоиды одним из представителей которых является хлорциан.

ТОКСИЧНОСТЬ

Синильная кислота относится к числу высокотоксичных соединений. Поражения этой кислотой возможны при вдыхании ее газов, приеме внутрь, а также при воздействии

Рекомендовано к покупке и прочтению разделом по токсикологии сайта https://meduniver.com/

паров или растворов на незащищенные кожные покровы. В боевых условиях основным путем поступления отравляющего вещества в организм является ингаляционный.

При приеме внутрь смертельная доза составляет 70 мг. Поражение человека возможно и при воздействии вещества на кожные покровы. которые активно резорбируют синильную кислоту в газообразном, жидком и в парообразном состоянии. Пребывание в атмосфере с концентрацией паров синильной кислоты 7-12 мг/л может привести к развитию тяжелой клиники отравления даже при надетом противогазе.

Способы боевого применения: артхимснаряды и мины, авиационно -химические бомбы ударного действия, химические фугасы.

Механизм действия синильной кислоты

В настоящее время механизм биологического действия синильной кислоты считается достаточно хорошо изученным. После исследований О. Варбурга (1928-1930) стало общепризнанным, что синильная кислота взаимодей ствует с окисленной формой фермента цитохромоксидазы. подавляя, таким образом, процессы тканевого дыхания. Все это позволило отнести синильную кислоту к типичным ферментным ядам с высокоизбирательным механизмом действия. На основании существующих представлений была разработана система терапевтических вмешательств, позволяющая спасать жизнь пораженным даже при самых тяжелых отравлениях.

Биологическое окисление, или иначе говоря, процесс тканевого дыхания, может быть условно разбит на два этапа: комплекс реакций дегидрирова ния с последующим переносом водорода на группу флавопротеиновых ферментов и комплекс реакций, связанных с активацией кислорода, что в конечном счете приводит к образованию воды. Принципиальный процесс конечного звена тканевого дыхания представлен на схеме

Принципиальное изображение биологического окисления:

Как видно из приведенной схемы, окисление любого субстрата начинается с реакции дегидрирования, в процессе которой НАД переходит из окисленной формы в восстановленную НАД*H2 передает водороды на систему флавопротеиновых ферментов, которые в свою очередь адресуют водород по направлению к цитохрому «б». При переходе от флавопротеиновой системы к цитохромной атом водорода теряет электрон и, приобретая заряд, из электронейтрального становится электроположительным, а следовательно, реакционноспособным. Активированный водород (протон) в дальнейшем способен соединяться с активированным кислородом, присоединившим отданный водородом электрон, с образованием воды.

Полученный цитохромной системой электрон окисляет атом железа, входящий в состав цитохрома «б», затем последовательно цитохромов «с» и «а». Переносчики электронов соединены в дыхательной цепи так, что их нормальные редокспотенциалы возрастают от отрицательных значений до величин, близких потенциалу нормального кислородного электрода. Так, например, редоксотенциал реакции Флавопротеин*Н 2 « флавопротеин +2Н++2е составляет 0,07, в то время как редокспотенциал конечной реакции Н2О « 1/2 O2+2Н++2е составляет величину +0,815. В точках наибольших перепадов редокспотенциалов в цепи передачи водородов и электронов (при передаче водорода с НАД*Н2 на систему флавопротеинов, при передаче электронов с цитохрома «б» на цитохром «с» и в области цитохромоксидазы) происходят реакции сопряженного окислительного фосфорилирования в процессе которых образуется АТФ, аккумулирующая энергию, необходимую для жизнедеятельности организма.

Введенная в животный организм, синильная кислота растворяется в плазме крови, которая затем доставляет яд ко всем органам и тканям. Синильная кислота не вступает во взаимодействие с двухвалентным железом гемоглобина, поэтому никакого связывания отравляющего вещества в крови не происходит. Точкой приложения действия синильной кислоты является окисленная трехвалентная форма железа,

входящая в состав цитохромной ферментной системы. Хотя окисленная форма железа в процессе передачи электронов возникает в атомах железа всех ферментов цитохромной системы, наиболее уязвимым для синильной кислоты является окисленное железо фермента цитохромоксидазы (цитохром «а3») Функциональная единица цитохромоксида зы состоит из 4 единиц гема «а», 2 единиц гема а3 и содержит 6 атомов меди. В последние годы стало известно, что синильная кислота реагирует не со всем количеством цитохрома «а», а лишь с его частью, что позволило обозначить не реагирующие с цианидом структуры как цитохром «а»; структуры, легко вступающие в реакцию, получили наименование цитохрома «а3». Железо цитохромоксидазы постоянно переходит из окисленной формы в восстановлен ную, что обеспечивает передачу электронов на атомарный кислород с сообщением ему отрицательного заряда.

При отравлении синильной кислотой последняя легко вступает во взаимодействие с окисленной формой железа цигохромоксидазы, лишая, таким образом, железо способности переходить в восстановленную форму. В результате блокируется процесс активации кислорода и соответственно соединение его с электроположительными атомами водорода. Блокирование цитохромок сидазы приводит к накоплению в митохондриях клеток протонов и свободных электронов, что приводит к торможению всей системы биологического окисления во всех органах и тканях животного организма. Следствием этого является прекращение образования макроэргических фосфорных соединений (АТФ) в цепи биологического окисления, что сопровождается быстрым истощением энергетических ресурсов.

Выше уже говорилось, что цианиды реагируют в основном с цитохромом «а3» и лишь частично с цитохромом «а». Последнее может служить объяснением известному факту, что в условиях отравления синильной кислотой не наблюдается тотального угнетения тканевого дыхания. Сохранившуюся окислительную активность принято обозначать как цианрезистентное дыхание. При стремительно развивающейся интоксикации цианрезистентное дыхание не может обеспечить выживаемость животного организма, однако при замедленном развитии отравления значение цианрезистентного дыхания может значительно возрастать.

В настоящее время известно, что механизм токсического действия синильной кислоты не ограничивается ферментами цитохромной системы. Имеются сообщения о подавлении цианидами активности около 20 различных ферментов, в том числе декарбоксилазы (Блашко, 1942). Последнее, естествен но, усложняет терапию отравлений синильной кислотой, однако практика показывает, что блокада цитохромоксидазы играет ведущую роль в механизме действия цианидов.

Таким образом, при отравлении синильной кислотой развивается состояние, когда, артериальная кровь, предельно насыщенная кислородом, проходя через ткани в венозную систему почти не отдает кислород тканям, лишенным способности его утилизировать. Развивается состояние тяжелого кислородного голодания, несмотря на то, что клетки тканей находятся в условиях оптимального кислородного снабжения. При стремительно развивающемся отравлении компенсаторные гликолитические механизмы генерирования энергии не успевают получить необходимое развитие и пострадавший погибает в результате выведения ядом из строя основного пути образования энергии тканевого дыхания.

Патогенез отравления синильной кислотой

Приведенные выше представления о биохимическом механизме действия цианистых соединений отражают основную характеристику токсического эффекта и не касаются избирательности поражения, той или иной физиологической системы. Последнее, однако, имеет большое значение и во многом определяет клиническую картину отравления.

Поскольку цианистые соединения парализуют процесс тканевого дыхания, то естественно, наиболее тяжело поражаются ткани, в которых энергетическое обеспечение происходит главным образом за счет окислительного фосфорилирования в терминальном звене биологического окисления. В этом отношении особое место занимает центральная нервная система, отличающаяся исключительной напряженностью окислительных процессов и незначитель ными запасами гликогена — вещества,

Рекомендовано к покупке и прочтению разделом по токсикологии сайта https://meduniver.com/

позволяющего в условиях кислородно го голодания обеспечивать ресинтез макроэргических фосфорных соединений.

В настоящее время не вызывает сомнений значение поражений центральной нервной системы в картине отравления и исходе интоксикации синильной кислотой. Согласно исследованиям О.Ф. Квасенко (1963), угроза летального исхода становится реальной, если угнетение окислительных реакций в центральной нервной системе достигает 65%. Введение цианидов в позвоночную артерию резко повышает токсичность препаратов по сравнению с инъекцией в бедренную вену. Характеризуя высокую чувствительность нервной системы к действию цианистых соединений, О.Ф. Квасенко отмечает, что подавление окислительных реакций в других тканях выражено значительно меньше и не может быть причиной смертельного исхода. Так, например, при угнетении окислительных процессов в головном мозге на 65-74% в печени отмечается угнетение только на 15-21%, в почках— на 16-33%, а в сердечной мышце

лишь на 8-10%. Причиной столь существенного различия в степени угнетения окислительных процессов в головном мозге по сравнению с другими органами может быть, с одной стороны, большая напряженность окислительных процессов, а с другой

интенсивность кровоснабжения мозга и соответственно большее поступление поступление отравляющего вещества в центральную нервную систему.

Тяжесть поражения головного мозга подтверждается также патологоа натомическими данными, которые приведены в соответствующем разделе. Глубокие морфологические изменения структур ткани мозга могут оказать решающее влияние на развитие и исход интоксикации, а также явиться причиной функциональной неполноценности центральной нервной системы у людей, перенесших острую интоксикацию или длительное время подвоздействием яда. В отдельных случаях возможно развитие тяжелых психотических состояний.

Характерное влияние цианистых соединений на гемопоэз обусловлено, как рефлексами с каротидных хеморецепторов, так и прямым действием яда на кроветворную ткань. Вполне понятно, что бурный процесс образования форменных элементов крови требует высокого энергетического обеспечения, которое возможно только в условиях интенсивного тканевого дыхания. Исследованиями М.Л. Беленького и Ю.Н. Стройкова (1950) показано, что возбуждение хеморецепторов каротидного клубочка при введении синильной кислоты не ограничивается стимуляцией дыхания, а ведет к сокращению селезенки и выбросу дополнительного количества эритроцитов в ток крови. В определен ных условиях возможно также рефлекторное усиление гемопоэза. Рефлектор ный механизм, по-видимому, сочетается с прямым влиянием цианидов на костный мозг, так как известно, что небольшие количества синильной кислоты способны стимулировать тканевые окислительные реакции. В первые месяцы хронической интоксикации отмечается эритроцитоз, возможно появление ретикулоцитов. В дальнейшем по мере углубления отравления реакция начинает носить менее выраженный характер или сменяется угнетением кроветворе ния.

Наиболее сложны для понимания изменения со стороны сердечно-сосу дистой системы. Отмечалось, что при отравлении цианидами симптомы, напоминающие коронарную недостаточность, обычно сопровождают как острое, так и хроническое отравление синильной кислотой. Наряду с этим угнетение окислительных реакций в сердечной мышце значительно меньше, чем в центральной нервной системе, печени или почках. Наконец, известно, что при тяжелых отравлениях цианидами деятельность сердца сохраняется еще некоторое время после паралича дыхательного центра. Исходя из этого, можно было бы предполагать, что сердечно-сосудистая система относительно устойчива к действию яда и должна мало страдать даже при тяжелых формах отравления. В пользу такого предположения говорит также то, что нарушения функции сердца возникают лишь при крайне тяжелом кислородном голодании, что можно рассматривать в качестве одного из защитных механизмов, развивавшихся в процессе эволюции.

По всей видимости, в основе явлений типа коронарной недостаточнос ти лежит сложный патогенетический механизм и эти явления обусловлены как гистотоксической гипоксией, так и угнетением активности других ферментных систем, которые подвержены ингибирующему действию синильной кислоты. Не исключено, что известное значение имеет вызываемое цианидами снижение чувствительности сердечнососудистой системы к ацетилхолину и адреналину, что затрудняет осуществление

трофических влияний со стороны вегетативного отдела нервной системы на сердце. Сложность механизма токсического действия синильной кислоты на сердце, очевидно, является основной

причиной длительного сохранения функциональной неполноценности сердечнососудистой системы у лиц, перенесших отравление цианидами.

Таким, образом, при отравлении синильной кислотой на первый план выступают явления кислородной недостаточности, которые могут осложнять ся нарушениями тканевого обмена, обусловленными влиянием цианидов на активность ряда ферментных систем, непосредственно не связанных с процессами тканевого дыхания.

Клиника и патоморфология поражений цианидами

Принято различать острую и хроническую формы отравления синильной кислотой. Острая форма отравления синильной кислотой имеет либо молниеносное, либо замедленное течение. Молниеносная форма возникает тогда, когда в организме человека за короткое время поступает большое количество ОВ.

При однократном вдохе воздуха, содержащего более 1 мг/л паров синильной кислоты, человек непроизвольно вскрикивает вследствие ларингоспазма падает, изгибаясь дугой (опистотонус) и умирает. Так протекает апоплексическая, или молниеносная форма.

Замедленная форма развития отравлений характерна для случаев нахождения в зараженной атмосфере с относительно небольшими концентраци ями ОВ, в случае поражении через кожу или желудочно-кишечный тракт. В течение замедленной формы различают начальную /продромальную/, диспноэтическую, судорожную и паралитическую стадии.

Начальная стадия характеризуется наличием ярко-розовой окраски слизистых, а затем и кожных покровов. Типичны для поражения синильной кислотой ротовые симптомы: царапающая боль в горле, металлический привкус, онемение языка, сокращение жевательной мышцы. Не менее характерны и глазные симптомы. Покраснение конъюнктивы, расширение зрачков сочетаются с симптомом ныряющего глазного яблока: чередование экзофтальма и энофтальма. Отмечается сильное возбуждение дыхания и учащение ритма сердечной деятельности. Довольно характерным является возникновение болей в области сердца. Если поступление яда в организм прекращается, описанные явления быстро проходят. В последующие двоетрое суток возможны жалобы на головную боль и общую слабость после чего наступает полное клиническое выздоровление.

В этой стадии отравления наряду с общими явлениями интоксикации наблюдается резкое возбуждение дыхания. Принято считать, что при поступлении синильной кислоты, в кровь последняя возбуждает хеморецепторы каротидного клубочка, вызывая рефлекторную стимуляцию дыхания. Как известно, хеморецепторы каротидных клубочков можно рассматривать в качестве специальных физиологических образований, информирующих центральную нервную

систему, в частности дыхательный центр, о напряжении кислорода в артериальной крови. В случае дефицита кислорода окислительные процессы в ткани каротидного клубочка угнетаются, что приводит к истощению энергетических резервов и снижению содержания аденозинтрифосфорной кислоты (АТФ). Недостаток АТФ вызывает возбуждение хеморецепторов каротидного клубочка и возникновение серии нервных импульсов, приводящих дыхательный центр в состояние возбуждения. Возникающая одышка способствует быстрому насыщению-крови кислородом, усилению окислительных реакций и ликвидации дефицита АТФ в ткани клубочка (М.Л. Беленький, 1951). Попадание в ток крови даже незначительных количеств синильной кислоты может привести к нарушению течения окислительных процессов и дефициту АТФ, т.е. вызвать картину, близкую кислородному голоданию, несмотря на высокое парциальное давление кислорода в крови. Развитие сильной одышки при достаточно высоком насыщении артериальной крови кислородом весьма характерно для начальной стадии отравления синильной кислотой. При дальнейшем развитии интоксикации это рефлекторное возбуждение дыхательного центра постепенно утрачивает значение, поскольку синильная кислота, поступающая с током крови в центральную нервную

Рекомендовано к покупке и прочтению разделом по токсикологии сайта https://meduniver.com/

систему, начинает подавлять процессы тканевого дыхания в структурах головного мозга, и в том числе в дыхательном центре. При выраженном угнетении дыхательного центра рефлектор ные влияния со стороны каротидных клубочков, как правило не приводят к возбуждению дыхания. Вторым довольно постоянным симптомом, свойствен ным стадии начальных явлений, следует считать появление болей в области сердца. Происхождение белей имеет в своей основе отчетливые коронарные нарушения, развивающиеся уже в первые минуты после поступления отравляющего вещества в ток крови.

Изменения коронарного кровотока могут быть как результатом прямого действия отравляющего вещества, так и следствием нарушения нервно-веге тативных экстракардиальных влияний.

Стадия одышки. Отмечаются глубокие нарушения функции дыхания. Вначале одышка усиливается, затем дыхание замедляется и становится более глубоким.

Обычно одышка носит инспираторный характер. Острое угнетение окислительных процессов в ткани головного мозга может привести к внезапной потере сознания.

Как правило, в этой стадии боли в области сердца усиливаются. напоминая стенокардические приступы. Тахикардия постепенно переходит в брадикардию, пульс становится редким, напряженным. Прогрессирующая брадикардия расценивается как плохой прогностический признак. Помимо явлений острой коронарной недостаточности, возможно появление синусовой аритмии, возникновение атриовентрикулярного ритма, а также явлений интерференции с диссоциацией. Электрокардиографически отмечается снижение интервала S-T, появление низкого и двухфазного зубца Т. Описанные изменения довольно стойки и отмечаются еще длительное время после проведения эффективной терапии отравления.

Несмотря на значительные нарушения функции дыхания и сердечно-сосудистой системы, явления цианоза отсутствуют. Кожа и видимые слизистые оболочки имеют розовую окраску, артериовенозная разница. по кислороду приобретает чрезвычайно низкие значения. Артериальная и венозная кровь насыщены оксигемоглобином. Развивается состояние гистотоксической гипоксии, когда ткани испытывают тяжелую кислородную недостаточность из-за потери способности утилизировать кислород.

Судорожная стадия. Особенностью этой стадии является развитие клоникотонических судорог, переходящих затем в тонические. Судороги носят приступообразный характер, причем мышечный тонус все время остается резко повышенным. Дыхание аритмичное, поверхностное, во время судорожных приступов полностью прекращается. Однако, несмотря на выраженные нарушения внешнего дыхания, явления цианоза отсутствуют и насыщение крови кислородом не претерпевает существенных изменений. Последнее отличает интоксикацию синильной кислотой от отравлений другими судорожными ядами, когда в период судорог развивается сильнейший цианоз, ослабляющийся во время последующей компенсаторной одышки.

В этой стадии отравления синильной кислотой отчетливо выявляются нарушения функции сердечно-сосудистой системы. Пульс становится замедленным, аритмичным. Возможно нарушение атриовентрикулярной проводимости с развитием полного блока. В результате токсического действия яда на стенки сосудов возникает сначала парез, а затем и паралич сосудистого русла. Как правило, наблюдается мидриаз и экзофтальм.

Паралитическая стадия. В этой стадии отравления ведущими являются симптомы токсического действия отравляющего вещества на высшие отделы центральной нервной системы, в том числе на жизненно важные центры продолговатого мозга. Дыхание становится замедленным, поверхностным, аритмичным. В результате паралича подкорковых центров блуждающего нерва сердце выходит из-под контроля вагуса. что приводит к учащению пульса. Паралич нервных центров вазомоторов сопровождается резким падением артериального давления. Мышечный тонус снижен. Грозным признаком близкого летального исхода является остановка дыхания. Сердечная деятельность обычно прекращается через несколько минут после паралича дыхательного центра. Описаны случаи прекращения сердечной деятельности даже через 5-8 минут после полной остановки дыхания. Последнее объясняется тем, что обладая собственным

автоматизмом, сердце сохраняет способность сокращаться и после паралича центральных нервнорегуляторных механизмов.

Особенности клинического течения при поражении хлорцианом

Отравление хлорцианом несколько отличается от интоксикации синильной кислотой. В начале у пораженных отмечаются резкое раздражение слизистой оболочки глаз, носа, глотки и нижних дыхательных путей, которые сопровождаются сильным слезотечением, кашлем, чувством удушья, давление в груди. После этого развиваются симптомы характерные для отравления синильной кислотой. Если пораженный не погибает в ранние сроки, как при отравлениях цианидами, то у него развивается отек легких, который может привести к смертельному исходу.

Патологоанатомическая картина отравления синильной кислотой и ее производными

Патологоанатомические изменения при отравлении синильной кислотой мало специфичны и сходны с изменениями, характерными для асфиксических состояний. Особенно скудны изменения при молниеносной форме течения отравления. В этом случае обращает на себя внимание запах горького миндаля и алая окраска кожных покровов и видимых слизистых оболочек.

При вскрытии отмечается полнокровие внутренних органов. Легкие полнокровны, несколько отечны. Селезенка анемична и имеет серовато-крас ную окраску. Сердечная мышца дряблая, сердце заполнено жидкой кровью. В серозных оболочках внутренних органов имеются многочисленные точечные кровоизлияния.

При микроскопическом исследовании обнаруживаются многочисленные кровоизлияния в веществе головного мозга и миокарде. В ряде случаев имеет место образование обширных полей некроза в сером веществе мозга и возникновение очагов демиелинизации в белом веществе. В мозжечке обнаруживаются глубокие изменения в клетках Пуркинье: явление тигролиза, снижение количества протоплазменной РНК, нейрофагия и явление некроза. В нервных клетках передних рогов спинного мозга отмечаются хроматолиз, вакуолиза ция и сморщивание клеточных структур.

При смерти пострадавшего через сутки и позже после воздействия синильной кислоты патологоанатомическая диагностика отравлений таким ядом без анамнестических данных крайне затруднена. Характерные сочетания неспецифических признаков /алый цвет крови, диффузно-красный цвет почти всех внутренних органов без цианотического оттенка и анатомические признаки острейшей асфиксии/ при этом отсутствуют. В случае смерти в подостром и отдаленном периодах изменения внутренних органов крайне скудны. Лишь в ЦНС, как показано П.Е. Кесаревым, морфологические изменения весьма характерны. В головном мозге животных, переживших острую интоксикацию, наблюдаются диффузные изменения нервных клеток /диффузно-токси ческая дистрофия/ и симметричные покровы в коре больших полушарий и подкорковых ганглиях. В поздний период отравления синильной кислотой весьма часты находки в виде дегенеративных изменений периферических нервов.

Дифференциальная диагностика отравления синильной кислотой и

хлорцианом

Наиболее сложная дифференциальная диагностика, в случае отравлении нитробензолом. Ощущение запаха горького миндаля в выдыхаемом пострадавшим воздухе может легко привести к диагностической ошибке. Однако в отличие от интоксикации синильной кислотой для отравления нитробензолом характерно появление серовато-синей окраски кожи и десен. Кровь имеет темно-бурый, а иногда даже шоколадный оттенок. Содержание кислорода в артериальной крови резко снижено. Молниеносная форма отравления окисью углерода весьма напоминает интоксикацию синильной кислотой. В отличие от интоксикации цианидами, отравленные окисью углерода впадают в состояние эйфории напоминающее алкогольное опьянение /легкая и средняя тяжесть поражения/. Для тяжелой степени отравления окисью углерода характерны резкая мышечная слабость, адинамия, редкие единичные приступы клонических судорог.

Рекомендовано к покупке и прочтению разделом по токсикологии сайта https://meduniver.com/

Интоксикация ОВ лишь отдаленно напоминает поражение синильной кислотой. Оба вида отравлений сопровождаются интенсивными клоникотони ческими судорогами, однако, если при отравлениях ОВ судороги являются основным, ведущим симптомом в клинической, картине, то при поражении синильной кислотой, судороги могут отсутствовать, несмотря на достаточную тяжелую степень отравления. Существенным является, также развитие выраженного цианоза у пораженных ФОВ. Во время судорожных приступов у отравленных ФОВ появляется синюшность кожи и слизистых оболочек, которая ослабляется или исчезает в период ремиссий. При интоксикации синильной кислотой окраска слизистых оболочек не меняется, несмотря почти на полное прекращение дыхания в момент возникновения судорожного приступа. Способность крови сохранять алую окраску в условиях сниженной вентиляции легких является одним из наиболее характерных признаков отравлений синильной кислотой.

Лечение при отравлении цианидами

Принципы лечения поражений синильной кислотой и её производными исходят из их механизма действия и включают в себя антидотные, патогенети ческие и симптоматические средства, терапии.

По механизму действия средства антидотной терапии можно разделить на четыре группы:

А/ метгемоглобинобразующие средства;

Б/ вещества, содержащие серу;

В/ акцепторы водорода;

Г/ вещества, содержащие углеводы.

Метгемоглобинобразователи занимают ведущее место в системе терапевтических мероприятий, направленных на спасение жизни отравленных цианидами. В качестве метгемоглобинобразователей используются следующие фармакологические препараты: амилнитрит, пропил-нитрит (по 0,5 мл в амп.), раствор нитрита натрия (10-15 мл в/в). Нитрит натрия считается одним из наиболее эффективных метгемоглобинобразователей. При введении метгемоглобинобразователей гемоглобин превращается в метгемоглобин. Метгемогло бин в отличие от гемоглобина содержит в своем составе железо трехвалент ное, вследствие чего он легко соединяется с синильной кислотой и образует цианметгемоглобин.

Впервую очередь метгемоглобин соединяется с синильной кислотой, растворенной в плазме крови, и прекращает тем самым ее переход в ткани. Вследствие нарушения равновесия концентраций синильной кислоты в плазме крови и тканях, происходит переход синильной кислоты из тканей в кровь и соединение её с метгемоглобином. Дыхательный фермент постоянно освобождается от синильной кислоты и происходит восстановление его активности, что клинически выражается снятием /уменьшением/ явления кислородно го дыхания

Вдальнейшем цианметгемоглобин постепенно диссоциирует и свободная синильная кислота вновь появляется в плазме. Однако этот процесс идет медленно, что позволяет принять своевременные меры по обезвреживанию цианида веществами, переводящими синильную кислоту в неактивное состояние.

Достоинства антидотов этой группы:

а/легкость введения амилнитрита и пропилнитрита в организм;

б/ быстрота их действия;

в/ способность реактивировать цитохромоксидазу.

Недостатки:

а/ способность вызывать значительное падение артериального давления, что заставляет проявлять осторожность при даче препаратов лицам с неполноценной сердечно-сосудистой системой;

б/ трудность создания оптимальных концентраций метгемоглобина; известно, что превращение 20-30% гемоглобина, в метгемоглобин не вызывает гемической формы гипоксии, т.к. кислородное депо крови значительно превышает кислородный запрос тканей. Однако передозировка метгемоглобинобра зователей может привести, к массивному образованию метгемоглобина, что в свою очередь может очень осложнить течение отравления, а в отдельных случаях даже стать причиной смертельного исхода;

в/ непрочность соединения цианметгемоглобин; образующийся цианметгемоглобин через некоторое время /первые часы/ распадается на синильную кислоту и метгемоглобин; при отравлении большими дозами и лечении нитритами может быть рецидив отравления; поэтому необходимо обезвредить или нейтрализовать свободную /диссоциированную/ синильную кислоту.

Механизм действия метиленовой сини и серосодержащих препаратов

Их достоинства и недостатки

Акцепторы водорода. В механизме токсического действия синильной кислоты накопление электроположительных атомов водорода играет роль фактора, тормозящего течение реакций биологического окисления. В связи с этим большой интерес представляет идея связывания водорода с целью устранения торможения тканевого дыхания.

Метиленовая синь в составе хромосмона. Она прочно вошла в арсенал средств, используемых при лечении отравлений синильной кислотой. Второй представитель этой группы — аскорбиновая кислота, является восстановите лем, т.к. легко отдает водород, превращаясь в дегидроаскорбиновую кислоту. Последняя биологически очень активна и способна жадно принимать водород. Акцептированный водород вступает во взаимодействие с молекулярным кислородом с образованием перекиси водорода. Имеются данные о том, что перекись водорода способна вытеснять ион циана из его соединения с железом. По мере восстановления активности каталазы перекись водорода будет разлагаться с образованием активного кислорода, который идет на окисление синильной кислоты в циановую. Циановая кислота — соединение нестойкое, она распадается в организме на углекислый газ и аммиак.

В больших дозах метиленовая синь /50 мл и более/ у пораженного синильной кислотой вызывает образование метгемоглобина, который связывает циангруппу, высвобождая цитохромоксидазу. В малых дозах /10-20 мл/ она способствует восстановлению метгемоглобина в оксигемоглобин и применяется в качестве лекарства при отравлениях метгемоглобинобразующими ядами.

Достоинства антидотов этой группы:

а/ метиленовая синь и дегидроаскорбиновая кислота являются катализаторами клеточного дыхания, а также переводят синильную кислоту в нетоксичное соединение;

б/ в сравнении с амилнитритом /пропилиитритом/ метиленовая синь обладает менее выраженным гипотензивным действием.

Недостатки:

а/ необходимость внутривенного введения метиленовой сини ограничивает применение сё, особенно при оказании первой помощи на месте поражения;

б/ метиленовая синь в больших дозах вызывает гемолиз и анемизацию, поэтому нужно ограничивать дозу /не более 1 мл/кг;

Рекомендовано к покупке и прочтению разделом по токсикологии сайта https://meduniver.com/