Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

2 курс / Нормальная физиология / ВСЯ ФИЗИОЛОГИЯ МЕДВУЗА

.pdf
Скачиваний:
4
Добавлен:
24.03.2024
Размер:
9.24 Mб
Скачать

Сокращение этих мышц вызывает перемещение ребер, что оказывает содействие инспираторным мышцам.

При спокойном дыхании вдох осуществляется активно, а выдох пассивно. Силы, обеспечивающие спокойный выдох:

сила тяжести грудной клетки;

эластическая тяга легких;

давление органов брюшной полости;

эластическая тяга перекрученных во время вдоха реберных хрящей. В активном выдохе принимают участие внутренние межреберные мышцы, задняя нижняя зубчатая мышца, мышцы живота.

2.Современные представления о структуре и локализации дыхательного центра. Автоматия дыхательного центра.

Ритмическая последовательность вдоха и выдоха, а также изменение характера дыхательных движений в зависимости от состояния организма (покой, работа различной интенсивности, эмоциональные проявления и т. д.) обусловлены наличием дыхательного центра, расположенного в продолговатом мозге Дыхательным центром называется совокупность нейронов, обеспечивающих деятельность аппарата дыхания и его приспособление к изменяющимся условиям внешней и внутренней среды.

Функциональная организация дыхательного центра.

На рисунке - нижняя часть ствола мозга (вид сзади). ПН - нейроны пневмотаксиса ; ИНСП - инспираторные нейроны ; ЭКСП - экспираторные нейроны.

Перерезка выше линии 1 на дыхании не отражается. Перерезка по линии 2 отделяет центр пневмотаксиса. Перерезка ниже линии 3 вызывает прекращение дыхания

Решающее значение в определении локализации дыхательного центра и его активности имели исследования отечественного физиолога Н. А. Миславского, который доказал существование дыхательного центра.

Результаты исследований Н. А. Миславского легли в основу современных представлений о локализации, строении и функции дыхательного центра. Было показано, что в дыхательном центре имеются две группы нейронов - инспираторные (вдыхательные) и э кс п и р а т о р н ы е (в ы д ы х а т е л ь н ы е) . О б н а ру ж е н ы н е ко т о р ы е особенности в работе дыхательного центра. При спокойном дыхании активна только небольшая часть дыхательных нейронов и, следовательно, в дыхательном центре есть резерв нейронов, который используется при повышенной потребности организма в кислороде. Установлено, что между инспираторными и экспираторными нейронами дыхательного центра существуют функциональные взаимосвязи. Они выражаются в том, что при возбуждении инспираторных нейронов, обеспечивающих фазу вдоха, деятельность экспираторных нервных клеток заторможена и наоборот. Таким образом, одной из причин ритмичной, автоматической деятельности дыхательного центра являются взаимосвязанные функциональные отношения между вдыхательными и выдыхательными нейронами.

Дыхательный центр обладает автоматией. В нем автоматически возникает ритмическое возбуждение с частотой 14 - 16 раз в минуту вследствие обменных процессов в самих нейронах, которые очень чувствительны к недостатку кислорода. Поскольку дыхательная мускулатура образована поперечно-полосатой мышечной тканью, человек способен произвольно изменять вентиляцию легких. Это возможно потому, что деятельность дыхательного центра продолговатого мозга находится под контролем коры больших полушарий.

Автоматия нейронов объясняется ритмическими колебаниями обменных процессов в них, а также воздействием на них углекислого газа. Эфферентные пути от бульбарного дыхательного центра идут к мотонейронам дыхательных межреберных и диафрагмальных мышц. Мотонейроны диафрагмальных мышц находятся в передних рогах 3-4 шейных сегментов спинного мозга, а межреберных в передних рогах грудных сегментов. Вследствие этого перерезка на уровне 1-2 шейных сегментов ведет к прекращению сокращений дыхательных

мышц. В передней части варолиева моста также имеются группы нейронов участвующих в регуляции дыхания. Кроме этих отделов ЦНС в регуляции дыхания участвуют гипоталамус, лимбическая система, кора больших полушарий. Они осуществляют более тонкую регуляцию дыхания.

3. Газообмен в легких и тканях. Основные закономерности перехода газов через мембрану. Парциальное давление и напряжение газов.

Во время вентиляции воздуха в легких происходит изменение химического состава и физических свойств поступающего в них атмосферного воздуха. В сухом воздухе при температуре 0° С и давлении 760 мм рт. ст., выдыхаемом взрослым человеком при спокойном дыхании, содержится 16,4% кислорода, 4,1% углекислого

газа и 79,5% азота. Однако при температуре 37° С альвеолярный воздух насыщен водяными п а р а м и , д а в л е н и е к о т о р ы х п р и э т о й температуре составляет 50 мм рт. ст. Поэтому

давление газов в альвеолярном воздухе равно 710 мм (760—50), содержание в нем кислорода 14—14,5%, углекислого газа 5,3—6% и азота 80— 80,5%.

Для газообмена между альвеолярным воздухом и венозной кровью, притекающей в капилляры легких, имеет значение разница в них парциальных давлений кислорода и углекислого газа. Парциальное давление кислорода, или та часть давления, которая приходится на его долю из общего давления альвеолярного воздуха, составляет 102— 110 мм рт. ст., а в венозной крови 37— 40 мм рт. ст. Вследствие этой разницы давлений в 70 мм рт. ст. кислород диффундирует из альвеолярного воздуха через стенки альвеол и капилляров в венозную кровь, превращая ее в артериальную. Парциальное давление углекислого газа в венозной крови 47 мм рт. ст., а в альвеолярном воздухе — 40 мм рт. ст. Вследствие этой разницы давления в 7 мм рт. ст. углекислый газ диффундирует из венозной крови в альвеолярный воздух и удаляется из организма при выдохе. Благодаря изменениям частоты и глубины дыхания парциальное давление углекислого газа в альвеолярном воздухе относительно постоянно, а парциальное давление кислорода в альвеолярном воздухе уменьшается пропорционально падению его парциального

давления во вдыхаемом воздухе, н а п р и м е р , п р и п о д ъ е м е н а большую высоту. Для сохранения ж и з н и ч е л о в е к а д о с т а т о ч н о разности парциального давления к и с л о р о д а в а л ь в е о л я р н о м воздухе и венозной крови в несколько мм рт. ст., а углекислого газа — в 0,03 мм.

В капиллярах тканей кислород из а р т е р и а л ь н о й к р о в и диффундирует через их стенки и мембраны клеток внутрь клеток и в о в н е к л е т о ч н о е в е щ е с т в о

благодаря разности давления в 100 мм рт. ст. и больше, так как в результате обмена веществ давление кислорода в тканях доходит до нуля. А давление углекислого газа в тканях в результате обмена веществ повышается до 60—70 мм рт. ст.

Поэтому углекислый газ диффундирует через мембраны клеток и стенки капилляров в венозную кровь, где его давление равно 47 мм рт. ст.

Транспорт газов. Кислород, поглощаемый венозной кровью в капиллярах легких, соединяется с восстановленным гемоглобином и переносится артериальной кровью в ткани в виде оксигемоглобина. Все виды связей гемоглобина подробно указаны в теме «Физиология крови»

Диффузия газов через аэрогематический барьер В организме газообмен О2 и СО2 через альвеолярно-капиллярную

мембрану происходит с помощью диффузии. Диффузия О2 и СО2 через аэрогематический барьер зависит от следующих факторов: вентиляции дыхательных путей; смешивания и диффузии газов в альвеолярных протоках и альвеолах; смешивания и диффузии газов через аэрогематический барьер, мембрану эритроцитов и плазму альвеолярных капилляров; химической реакции газов с различными компонентами крови, и наконец от перфузии кровью легочных капилляров.

Диффузия газов через альвеолярно-капиллярную мембрану легких осуществляется в два этапа. На первом этапе диффузионный перенос

газов происходит по концентрационному градиенту через тонкий аэрогематический барьер, на втором — происходит связывание газов в крови легочных капилляров. После преодоления аэрогематического барьера газы диффундируют через плазму крови в эритроциты. Значительным препятствием на пути диффузии О2 является мембрана эритроцитов. Плазма крови практически не препятствует диффузии газов в отличие от альвеолярно-капиллярной мембраны и мембраны эритроцитов. Особенности диффузии газов через аэрогематический барьер количественно характеризуются через диффузионную способность легких.

4. Кривая диссоциации оксигемоглобина, ее характеристика. Кислородная емкость крови.

Кислородная емкость крови - максимальное количество кислорода, обратимо связанное кровью; выражается в объемных процентах; зависит от концентрации в крови гемоглобина. Кислородная емкость крови человека ок. 18-20%.

Кривая диссоциации оксигемоглобина

В исходной точке гемоглобин не содержит кислорода и напряжение кислорода в крови также равняется нулю. По мере повышения напряжения гемоглобин начинает быстро насыщаться кислородом, превращаясь в оксигемоглобин :

небольшого увеличения напряжения кислорода оказывается достаточно д л я с у щ е с т в е н н о г о п р и р о с т а содержания НЬО2. При 40 мм рт. ст. содержание НЬО2 достигает уже 75 %. Затем наклон кривой становится все более и более пологим. На этом участке кривой гемоглобин уже менее охотно присоединяет к себе кислород,

и для насыщения оставшихся 25 % НЬ требуется поднять напряжение с 40 до 150 мм рт. ст. Впрочем, в естественных условиях гемоглобин артериальной Крови никогда не насыщается кислородом полностью.

5. Рефлекторно-гуморальные механизмы регуляции дыхания. Механизм первого вдоха новорожденного.

Специфическим регулятором активности нейронов дыхательного центра является углекислый газ, который действует на дыхательные нейроны непосредственно и опосредованно. В ретикулярной формации продолговатого мозга, вблизи дыхательного центра, а

также в области сонных синусов и дуги аорты обнаружены хеморецепторы, чувствительные к углекислому газу. При увеличении напряжения углекислого газа в крови хеморецепторы возбуждаются, и нервные импульсы поступают к инспираторным нейронам, что приводит к повышению их активности.

Углекислый газ повышает возбудимость нейронов коры головного мозга. В свою очередь клетки КГМ стимулируют активность нейронов дыхательного центра.

При оптимальном содержании в крови углекислого газа и кислорода наблюдаются дыхательные движения, отражающие умеренную степень возбуждения нейронов дыхательного центра. Эти дыхательные движения грудной клетки получили название эйпноэ.

Избыточное содержание углекислого газа и недостаток кислорода в к р о в и у с и л и в а ю т а к т и в н о с т ь д ы х а т е л ь н о г о ц е н т р а , ч т о обусловливает возникновение частых и глубоких дыхательных движений –гиперпноэ. Еще большее нарастание количества углекислого газа в крови приводит к нарушению ритма дыхания и появлению одышки – диспноэ.

Механизм первого вдоха новорожденного.

В организме матери газообмен плода происходит через пупочные сосуды. После рождения ребенка и отделения плаценты указанная связь нарушается. Метаболические процессы в организме новорожденного приводят к образованию и накоплению углекислого газа, который, так же как и недостаток кислорода, гуморально возбуждает дыхательный центр. Кроме того, изменение условий существования ребенка приводит к возбуждению экстеро- и проприорецепторов, что также является одним из механизмов, п р и н и м а ю щ и х у ч а с т и е в о с у щ е с т в л е н и и п е р в о г о в д о х а новорожденного.

Рефлекторные механизмы.

Р а з л и ч а ю т п о с т о я н н ы е и н е п о с т о я н н ы е ( э п и з о д и ч е с к и е) рефлекторные влияния на функциональное состояние дыхательного центра.

Постоянные рефлекторные влияния возникают в результате раздражения рецепторов альвеол (рефлекс Геринга — Брейера), корня легкого и плевры (пульмоторакальный рефлекс), хеморецепторов дуги

аорты и сонных синусов (рефлекс Гейманса), проприорецепторов дыхательных мышц.

Рефлекс Геринга — Брейера является одним из механизмов саморегуляции дыхательного процесса, обеспечивая смену актов вдоха и выдоха. При растяжении альвеол во время вдоха нервные импульсы от рецепторов растяжения по блуждающему нерву идут к экспираторным нейронам, которые, возбуждаясь, тормозят активность инспираторных нейронов, что приводит к пассивному выдоху. Легочные альвеолы спадаются, и нервные импульсы от рецепторов растяжения уже не поступают к экспираторным нейронам. Активность их падает, что создает условия для повышения возбудимости инспираторной части дыхательного центра и осуществлению активного вдоха.

Кроме того, активность инспираторных нейронов усиливается при нарастании концентрации углекислого газа в крови, что также способствует проявлению вдоха.

П ул ь м о т о р а к а л ь н ы й р е фл е кс в о з н и к а е т п р и в о з б у ж д е н и и рецепторов, заложенных в легочной ткани и плевре. Проявляется этот рефлекс при растяжении легких и плевры. Рефлекторная дуга замыкается на уровне шейных и грудных сегментов спинного мозга.

К дыхательному центру постоянно поступают нервные импульсы от проприорецепторов дыхательных мышц. Во время вдоха происходит возбуждение проприорецепторов дыхательных мышц и нервные импульсы от них поступают в инспираторную часть дыхательного центра. Под влиянием нервных импульсов тормозится активность вдыхательных нейронов, что способствует наступлению выдоха.

Непостоянные рефлекторные влияния на активность дыхательных нейронов связаны с возбуждением разнообразных экстеро- и интерорецепторов

6 . Д ы х а н и е в ус л о в и я х п о н и ж е н н о г о и п о в ы ш е н н о г о барометрического давления.

Снижение парциального давления кислорода в окружающем воздухе, что в естественных условиях имеет место при восхождении человека

на высокие горы, вызывает недостаток 02 в крови, что называется артериальной гипоксемией.

Поскольку насыщение артериальной крови кислородом при подъеме на высоту до 3000 м над уровнем моря составляет не менее 90 %, то в этих условиях незначительное снижение напряжения 02 в артериальной крови человека происходит за счет уменьшения содержания в крови физически растворенного кислорода. Это, тем не менее, обусловливает появление слабо выраженной гипоксемии и сопровождается незначительным увеличением вентиляции легких. Восхождение человека на высокую гору всегда сопряжено с усиленной мышечной деятельностью, повышением температуры тела, увеличением в плазме крови содержания катехоламинов. Эти факторы оказывают комплексное стимулирующее влияние на дыхание человека при восхождении на горную высоту. В результате слабо выраженная артериальная гипоксемия при участии периферических хеморецепторов увеличивает степень гиперпноэ у человека, обусловленное работой мышц. Повышенное содержание катехоламинов в плазме крови повышает чувствительность периферических хеморецепторов к гипоксемии и, усиливая активность периферических хеморецепторов, ведет к росту параметров внешнего дыхания. Наконец, повышение температуры тела человека при восхождении на высокие горы в результате мышечной деятельности также повышает чувствительность периферических хеморецепторов к гипоксемии. Повышение температуры тела при физической работе может стимулировать дыхание через усиление скорости метаболизма в организме, через периферические хеморецепторы и нейроны дыхательного центра. При этом периферические хеморецепторы являются основными источниками стимуляции вентиляции легких у человека при гипоксии. Поэтому при восхождении человека на высокую гору до высоты 3—3,5 км над уровнем моря усиление вентиляции обусловлено активацией механизмов гуморальной и нервной регуляции дыхания в пределах физиологической нормы.