Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
4 курс / Лучевая диагностика / Современные_виды_томографии_Учебное_пособие_Марусина_М_Я_,_Казначеева.pdf
Скачиваний:
0
Добавлен:
24.03.2024
Размер:
3.19 Mб
Скачать

93

и глубину 30 мм.

Электронная система регистрирует импульсы электрического тока, в которые преобразуется световая вспышка.

Сцинтилляционные детекторы позволяют регистрировать все виды радиоактивного излучения, причем в отличие от газоразрядных счетчиков эффективность регистрации высокоэнергетичных γ-квантов может быть в сцинтилляционных детекторах очень большой (50 или даже 100%). Высокая временная разрешающая способность позволяет использовать сцинтилляционные детекторы при высоких скоростях счета и проводить измерения коротких интервалов вплоть до десятых долей секунды. При выборе детекторов производители томографов учитывают такие их свойства как длина аттенюации, эффективность обнаружения, плотность, яркость, время восстановления, коэффициент преломления, цена.

3.3. Реконструкция изображений

Реконструкция изображений производится путем обработки данных, полученных детекторами, расположенными в виде нескольких колец, что позволяет одновременно получать изображения до пятнадцати срезов.

Получение изображения базируется на внешнем обнаружении совпа- Удалено: <sp> дающих испускаемых лучей в течение 10 нс между двумя датчиками, расположенными на противоположных сторонах сканера (рис. 57). Каждый детектор может работать режиме регистрации совпадений со множеством расположенных напротив детекторов. Линия, соединяющая центры детекторов, проходит через объект и используется для реконструкции изображения. Таким образом, существует возможность определения совпадений на нескольких углах (расходящийся пучок). Если уничтожение происходит вне объема между этими двумя датчиками, то может быть обнаружен только один фотон, и этот случай отклоняется как не удовлетворяющий условию. Одновременное обнаружение фотона обеспечивает область представления с однородной чувствительностью.

Распределение

γ луч

изотопа

 

γ луч

Рис. 57. Совпадающие детекторы в ПЭТ камере

Программное обеспечение томографа получает данные о событиях совпадения, зарегистрированных в угловых и линейных положениях, количественное суммирование которых дает двумерную картину распределения изо-

94

топа. Подобно КТ и МРТ, отображение в ПЭТ косвенное и производится с помощью компьютерной реконструкции изображений [8]. Для реконструкции изображения необходимо получить распределение изотопаg(x1, x2 )

внутри отображаемого объекта. Если обозначить коэффициент аттенюации тела как f (x1 , x2 ) , то интенсивность излучения I , регистрируемая детекто-

рами вдоль прямой линии L, определяется с помощью выражения

I = e

f ds

gdτ

(35)

L( x)

 

L

 

 

 

 

где τ –отрезок вдоль L , L(x) – участок L между точкой (x1, x2 )

и детекто-

ром. Коэффициент аттенюации f (x1 , x2 ) аналогичен коэффициенту погло-

щения, измеряемому в обычной компьютерной томографии.

Поскольку в ПЭТ источник испускает две противоположно направленные частицы и излучение в обоих направлениях измеряется одновременно, выражение (35) можно переписать как

I = e

f ds

f ds

gdτ

(36)

 

L+( x)

 

L _( x)

 

L

 

 

 

 

 

 

 

где L+ , L– отрезки линии L , разделенной на участки точкой х. Поскольку

L+ + L= L , то выражение (36) приобретает вид

 

 

I = e

f dτ

gdτ

 

 

(37)

L

 

 

 

 

 

 

 

L

 

 

 

Поскольку значения I и f (x1 , x2 ) известны из измерений, основной математической задачей ПЭТ является определение функции g(x1, x2 ) по ее

известным линейным интегралам. Эта математическая задача идентична задаче компьютерной томографии, рассмотренной выше.

Отличительной особенностью ПЭТ изображений является их представление по цветной шкале. Цвет или степень яркости каждого пиксела пропорциональны концентрации изотопа в соответствующей точке объекта, что создает более наглядную картину.

95

3.4. Аппаратное обеспечение и контроль качества

Использование ПЭТ в клинике накладывает требования на характеристики и производительность аппаратного и программного обеспечения цифровой обработки, отличающегося от систем, используемых в исследовательской деятельности. Разрешающая способность ПЭТ должна быть сбалансирована приемлемым уровнем шума изображений и высокой пропускной способностью системы. Для большинства ПЭТ систем приемлемым является внутреннее разрешение 6 мм по всем пространственным направлениям, позволяющее реконструировать изображения с разрешением в 8-10 мм. Такие системы имеют показатель расстояния дискретизации равный 3 мм по всем пространственным направлениям. Относительно однородное разрешение и дискретизация делает их пригодными к 3D визуализации.

Пропускная способность - один из важных показателей системы. Часто требуется быстро подготовить томограф к следующему исследованию, получить, реконструировать и обработать данные, напечатать и заархивировать данные. Система должна позволять проводить исследования в нескольких режимах, включая статические, динамические, синхронизированные и прямолинейные исследования.

Поле обзора ПЭТ сканеров должно позволять проводить как исследования отдельных органов, так и всего тела. Поле обзора таких систем равно 60 см. Аксиальное поле обзора большинства современных томографов ограничивается приблизительно 10 см, что накладывает некоторые ограничения на исследования. Для используемых в клинике систем желательно расширить аксиальное поле обзора до 15 - 20 см, что позволит повысить эффективность исследований. Однако, из-за того, что детекторы вносят существенный вклад в стоимость томографа, возникает вопрос о предельной приемлемой стоимости ПЭТ сканера.

Современные ПЭТ сканеры имеют до 16 плоскостей колец, что обеспечивает суммарно 31 поперечную плосткость. Разрешение составляет приблизительно 5 мм по всем направлениям. С дискретизацией 3 мм можно проводить исследования без изменений положений детекторов.

Клинический ПЭТ сканер должен поддерживать широкий диапазон скоростей счета без существенных потерь в разрешающей способности и линейности. В большинстве исследований, вводимая активность не требует предельных скоростей счета. Но в кардиоисследованиях вводимая активность может требовать высоких скоростей счета, что приводит к существенным простоям аппаратуры. Большинство систем имеют встроенную систему коррекции простоя, обеспечивая линейную реакцию на вводимую активность. Однако, при таких высоких скоростях счета могут происходить потери в разрешении из-за наложения событий.

Важным аспектом клинической ПЭТ является необходимость быстром и