Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Характеристики витой пары.docx
Скачиваний:
208
Добавлен:
15.03.2015
Размер:
160.27 Кб
Скачать

Максимально допустимые значения next для кабелей категории 3,4 и 5 на длине 100 м по стандарту tia/eia-568-a

Суммирование отдельных составляющих одной частоты переходной помехи на ближнем конце происходит с различными фазами (по напряжению). Поэтому реальный график частотной зависимости величины NEXT имеет вид шумообразной кривой с резкими перепадами величин переходного затухания на близких частотах. Стандарты нормируют только минимальную величину параметра NEXT, и кабель считается соответствующим требованиям стандарта, если во всем рабочем частотном диапазоне реальная величина NEXT не падает ниже определенного нормами значения.

Типовая зависимость переходного затухания на ближнем и дальнем концах от длины линии показана на рисунке.

Зависимость переходного затухания не дальнем и ближнем концах от длины линии

Переходное затухание на ближнем конце с увеличением длины линии сначала несколько уменьшается, а затем стабилизируется. Качественное объяснение этого эффекта состоит в том, что, начиная с определенной длины линии, токи помех с отдаленных участков приходят на ближний конец настолько ослабленными, что практически не увеличивают взаимного влияния между цепями, и величина NEXT остается постоянной. Отсюда следует, что значения NEXT для двух концов одной пары могут существенно различаться между собой, поэтому все стандарты требуют его измерения с обеих сторон. График зависимости переходного затухания на дальнем конце от длины линии носит экстремальный характер. Вначале, пока длина линии мала, увеличение ее протяженности увеличивает мощность помехи. По мере увеличения длины начинает проявляться рост затухания помеховых составляющих, и FEXT монотонно возрастает.

Для улучшения параметра NEXT в симметричных кабелях применяют различный шаг скрутки витых пар. Кроме ослабления электромагнитной связи отдельных пар такое решение не позволяет им плотно прилегать друг к другу по всей длине, что дополнительно увеличивает переходное затухание.

Известно, что сетевое оборудование различного назначения по-разному использует симметричный кабель как среду передачи. Поэтому в зависимости от приложения и метода использования кабеля нормирование величины переходных помех или, что эквивалентно, переходного затухания выполняется по-разному.

Наиболее популярными ЛВС в настоящее время являются сети Ethernet. При использовании полнодуплексного режима передатчик и приемник работают одновременно, и эта аппаратура использует для работы две витые пары одного кабеля. Этот случай в схематическом виде изображен на рисунке.

К определению next

При этом ослабленный после прохождения по витой паре информационный сигнал взаимодействует на входе приемника с мощной переходной помехой работающего на этом же конце передатчика. Поэтому достаточно нормировать следующий параметр:

NEXT = Рс - max Рп

Где,

Рс - уровень сигнала,

Рп - уровень создаваемой им переходной помехи

Величина max Рп берется на наихудший случай, так как заранее неизвестно, какие две пары будут использоваться сетевым оборудованием для организации информационного обмена.

В последнее время при построении сетевого оборудования четко обозначилась тенденция использования им для передачи информации одновременно нескольких пар (оборудование ЛВС 100Base-T4, 100VG AnyLAN и 1000Base-TX). С другой стороны, сигналы нескольких приложений все чаще передаются в одном многопарном кабеле. В данной ситуации нормирование только параметра NEXT оказывается недостаточным, так как на приемник одновременно действует несколько источников помех. Для учета этого обстоятельства используется более сложная расчетная модель, которая для 4-парного кабеля имеет вид, изображенный на рисунке (все пары действуют на одну), и нормируется параметр так называемой суммарной мощности (power sum).