Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ТЭЦ 63,44,64

.docx
Скачиваний:
32
Добавлен:
15.03.2015
Размер:
433.11 Кб
Скачать
  1. 63. Понятие о несинусоидальных (негармонических) токах и напряжениях. Возникновение несинусоидальных токов. Понятие о нелинейных элементах. Сложение синусоид, имеющих разные частоты.

Токи, напряжения и э. д. с., изменяющиеся во времени по периодическому несинусоидальному закону, называются периодическими несинусоидальными. Причиной возникновения несинусоидальности э. д. с., напряжений и токов могут быть как синхронные генераторы, являющиеся источниками синусоидального тока, так и приемники энергии, в схемах которых имеются нелинейные элементы. Кроме того, причиной возникновения несинусоидальных токов может бытъ подключение к электрической цепи генераторов несинуроидальных напряжений определенной формы, например в виде широко применяемых в радиоэлектронике релаксационных генераторов пилообразной (рис. 5.1, а), прямоугольной (рис. 5.1, б) и других форм напряжений.

Кстати, в различных устройствах радиотехники, автоматики, вычислительной техники, системах обработки данных, в автоматизированных системах управления очень широко применяют генераторы периодических импульсов самой различной формы, причем само отклонение импульсов от синусоидальной формы является основой рабочего процесса того или иного устройства. Поэтому знание элементов теории несинусоидальных периодических токов необходимо для понимания принципа работы различных электронных и полупроводниковых устройств. Таким образом, в линейных цепях несинусоидальный ток может возникать под воздействием несинусоидального периодического напряжения, получаемого в специальных генераторах или за счет искажений, вносимых синхронными генераторами.

В синхронных генераторах одной из причин искажения формы э. д. с. является отличие распределения магнитной индукции вдоль воздушного зазора от синусоидального. Ток несинусоидальной формы может также возникать в нелинейных цепях. В частности, если в цепи имеется индуктивная катушка со стальным сердечником, то при синусоидальном напряжении в цепи по мере насыщения сердечника возникает ток несинусоидальной формы, так как при увеличении насыщения появляется нелинейность в зависимости между магнитным потоком и намагничивающим током.

При анализе электрических цепей с несинусоидальными токами и напряжениями широко используют теорему Фурье, согласно которой любая периодически изменяющаяся величина может рассматриваться как сумма постоянной величины и ряда синусоидальных величин различной частоты. Следовательно, для анализа несинусоидальных периодических токов можно использовать методы, применяемые для анализа синусоидальных токов, если предварительно представить периодические несинусоидальные функции рядом Фурье. Если затем определить токи, обусловленные действием отдельных составляющих, то, согласно принципу наложения, складывая их, получают искомый ток цепи.

  1. 44. Компенсация реактивной мощности в электрических сетях с помощью конденсаторов.

  1. 64. Выражение сложной периодической кривой с помощью тригонометрического ряда (ряда Фурье). Постоянная составляющая, основная и высшие гармоники. Симметричные и несимметричные кривые. Разложение периодических кривых на гармоники. Понятие о спектрах.

Разложение периодических несинусоидальных кривых в ряд Фурье

Из математики известно, что всякая периодическая функция , где Т – период, удовлетворяющая условиям Дирихле, может быть разложена в тригонометрический ряд. Можно отметить, что функции, рассматриваемые в электротехнике, этим условиям удовлетворяют, в связи с чем проверку на их выполнение проводить не нужно.

При разложении в ряд Фурье функция представляется следующим образом:

 .

Здесь  - постоянная составляющая или нулевая гармоника;  - первая (основная) гармоника, изменяющаяся с угловой частотой , где Т – период несинусоидальной периодической функции.

В выражении (1) , где коэффициенты  и  определяются по формулам ; .

 

Свойства периодических кривых, обладающих симметрией

Коэффициенты ряда Фурье для стандартных функций могут быть взяты из справочной литературы или в общем случае рассчитаны по приведенным выше формулам. Однако в случае кривых, обладающих симметрией, задача существенно упрощается, поскольку из их разложения выпадают целые спектры гармоник. Знание свойств таких кривых позволяет существенно сэкономить время и ресурсы при вычислениях.

Кривые, симметричные относительно оси абсцисс.

К данному типу относятся кривые, удовлетворяющие равенству  (см. пример на рис. 2). В их разложении отсутствуют постоянная составляющая и четные гармоники, т.е. .

Кривые, симметричные относительно оси ординат.

К данному типу относятся кривые, для которых выполняется равенство  (см. пример на рис. 3). В их разложении отсутствуют синусные составляющие, т.е. .

Кривые, симметричные относительно начала координат.

К этому типу относятся кривые, удовлетворяющие равенству  (см. пример на рис. 4). При разложении таких кривых отсутствуют постоянная и косинусные составляющие, т.е. .

Система трехфазных ЭДС (напряжений, токов и т.д.) называется симметричной, если она состоит из 3 одинаковых по модулю векторов ЭДС (напряжений, токов и т.д.), сдвинутых по фазе друг относительно друга на одинаковый угол . Векторная диаграмма для симметричной системы ЭДС (рис. 2), представлена на рис. 3.

Из несимметричных систем наибольший практический интерес представляет двухфазная система с 90-градусным сдвигом фаз (см. рис. 4).

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]