Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
регуляция метаболических процессов.rtf
Скачиваний:
79
Добавлен:
15.03.2015
Размер:
27.5 Mб
Скачать

Регуляция метаболических процессов

Живая клетка – это открытая система, которая постоянно обменивается с внешней средой веществами и энергией. В клетку поступают питательные вещества, которые используются в качестве строительного и энергетического материала, из клетки выводятся конечные продукты метаболизма.

В клетке постоянно происходит большое количество разнообразных химических реакций, которые формируют метаболические пути – последовательность превращения одних соединений в другие. Метаболизм – совокупность всех метаболических путей, протекающих в организме.

Выделяют – катаболизм (распад сложных веществ до простых с высвобождением энергии) и анаболизм (синтез более сложных веществ из простых веществ).

Все пути согласованы между собой во времени и пространстве. Эта согласованность протекания метаболических процессов обеспечивается сложными механизмами регуляции.

Организация химических реакций в метаболические пути

Оптимальная активность ферментов, регулирующих реакции метаболического пути, достигается благодаря определенной организации в клетке.

  1. Пространственная локализация ферментов

Большинство ферментов локализовано внутри клетки, причем ферменты одного метаболического пути находятся в одном отделе клетки. Разделение метаболических путей важно для противоположно направленных процессов. Например, синтез жирных кислот происходит в цитоплазме, а их распад в митохондриях. Если бы такого разделения не существовало, то возникали бы бесполезные с физиологической точки зрения пути.

В метаболических путях продукт первой реакции служит субстратом второй и так далее до формирования конечного продукта. Промежуточные продукты одного пути могут высвобождаться из последовательных реакций и использоваться в других метаболических путях, т.е. все метаболические пути связаны между собой.

Пространственная организация ферментов может быть настолько выражена, что продукт реакции не может быть вычленен из метаболического пути и обязательно служит субстратом следующей реакции.

Такая организация метаболического пути называется мультиферментным комплексом. Эти комплексы связаны с мембранами. Пример такого комплекса – пируватдегидрогеназный комплекс, под действием которого происходит окислительное декарбоксилирование пировиноградной кислоты.

  1. Структура метаболических путей

Метаболические пути подразделяются на 4 типа. Если субстрат превращается в один продукт, то такой путь называется линейным (гликолиз). Чаще встречаются разветвленные пути – когда синтезируются разные продукты в зависимости от потребности клетки (синтез нуклеотидов). Также существуют циклический (цикл трикарбоновых кислот) и спиральный (β-окисление жирных кислот) метаболические пути.

Органоспецифичность

Ферменты находятся во всех клетках организма. В процессе дифференцировки клеток изменяется и их ферментный состав. Например, фермент аргиназа, участвующая в синтезе мочевины, находится в клетках печени. Это так называемый органоспецифичный фермент.

Компартментализация

Функционирование клетки обеспечивается пространственной и временной регуляцией метаболических путей. Пространственная регуляция связана с локализацией определенных ферментов в различных органеллах. В ядре находятся ферменты, связанные с синтезом ДНК и РНК, в цитоплазме – ферменты гликолиза, в лизосомах – гидролитические ферменты, в митохондриях – ферменты цикла трикарбоновых кислот и цепи переноса электронов.

Принципы регуляции метаболических путей

Все химические реакции в клетке протекают при участии ферментов. Чтобы воздействовать на скорость протекания метаболического пути, достаточно регулировать количество или активность ферментов. В каждом метаболическом пути есть ключевые ферменты, которые регулируют скорость всего пути. Эти ферменты называются регуляторными.

Регуляция скорости ферментативных реакций осуществляется на 3 уровнях:

  • Изменение количества молекул фермента

  • Доступность субстрата и кофермента

  • Изменение каталитической активности фермента

Регуляция количества молекул фермента в клетке

В клетке постоянно происходит синтез и распад белковой молекулы фермента

синтез

Аминокислоты Фермент

Распад

Регуляция синтеза фермента может происходить на любой стадии формирования белковой молекулы. Наиболее изучена регуляция синтеза белковой молекулы на уровне транскрипции, которая осуществляется гормонами и биологически активными молекулами. Распад ферментов менее изучен.

Регуляция скорости ферментативной реакции доступностью субстрата и кофермента

Главным и необходимым параметром, регулирующим скорость метаболического пути, является наличие первого субстрата. Чем выше его концентрация, тем выше скорость метаболического пути.

Другим параметром является наличие регенерированных коферментов. В реакциях дегидрирования коферментом дегидрогеназ служат окисленные формы НАД+, ФАД, ФМН, которые восстанавливаются в ходе реакции. Чтобы коферменты вновь участвовали в реакции, необходимо, что они вновь превратились в окисленную форму.

Регуляция каталитической активности фермента

  • Аллостерическая регуляция

  • Регуляция с помощью белок-белковых взаимодействий

  • Регуляция путем фосфорилирования/дефосфорилирования фермента

  • Регуляция протеолизом

Аллостерическая регуляция

Ферменты, имеющие такой механизм регуляции являются, как правило, олигомерными белками. Они состоят из нескольких (не менее 2 х ) субъединиц, имеют активный и аллостерический центры, которые находятся на разных субъединицах. Присоединение эффектора (клеточного метаболита) в аллостерический центр вызывает кооперативные конформационные изменения всех протомеров.

Если в аллостерическом центре связывается эффектор (активатор), повышается связывание субстрата в активном центре и возрастает скорость реакции, которую катализирует этот фермент. Конформационные перестройки в активном центре фермента повышают или понижают его сродство к субстрату.

При увеличении в клетке концентрации активатора возрастает скорость его связывания в аллостерическом центре. Изменяется конформация регуляторной субъединицы фермента, происходят кооперативные конформационные изменения в ферменте, изменяется конформация активного центра фермента, повышается сродство фермента к субстрату и скорость ферментативной реакции. При понижении концентрации аллостерического активатора снижается скорость связывания регуляторного лиганда в аллостерическом центре. Изменяется конформация регуляторной субъединицы, происходят кооперативные конформационные изменения в ферменте, изменяется конформация активного центра, снижается сродство к субстрату и понижается скорость реакции.

Если же эффектором является ингибитор, то сродство фермента к субстрату и скорость превращения его в продукт снижаются.

Аллостерические ферменты регулируют скорость метаболических путей, которые представляют собой последовательность взаимосвязанных реакций, катализируемых разными ферментами

Е1 Е2 Е3 Е4

S B C D P

Вещество S превращается в продукт Р в результате 4 последовательных ферментативных реакций. Продукт одной реакции служит субстратом следующей.

Аллостерические ферменты катализируют:

  • Необратимые или частично обратимые реакции

  • Самые медленные, ключевые реакции

  • Реакции в местах разветвления метаболического пути

Регуляторные молекулы:

  • Конечные продукты метаболических путей

  • Субстраты метаболических путей

  • Промежуточные метаболиты или специфические молекулы

Например, катаболизм глюкозы до СО2 и Н2О регулируется аллостерически.

Е1 Е2 Е3 Ем

глюкоза В С М N ….. ……. СО2, Н2О, АТФ

Значение данного процесса состоит в синтезе АТФ в клетке за счет катаболизма глюкозы. При увеличении отношения АТФ/АДФ скорость реакций данного метаболического пути снижается. Из представленной выше последовательности ферментативных реакций аллостерическим является Е3, так как он катализирует необратимую самую медленную реакцию.

При повышении уровня АТФ в клетке

  • АТФ взаимодействует с аллостерическим центром фермента Е3

  • Происходят кооперативные конформационные изменения фермента Е3

  • Снижается сродство Е3 к субстрату

  • Понижается активность и замедляется реакция катализируемая ферментом Е3

  • Понижается скорость метаболического пути