Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Майорова Ксения Тема №13.docx
Скачиваний:
9
Добавлен:
12.03.2015
Размер:
162.94 Кб
Скачать

Химическое строение нуклеиновых кислот. Нуклеиновые кислоты (ДНК и РНК) относятся к сложным высокомолекулярным соединениям, состоят из небольшого числа индивидуальных химических компонентов более простого строения. Так, при полном гидролизе нуклеиновых кислот (нагревание в присутствии хлорной кислоты) в гидролизате обнаруживают пуриновые и пиримидиновые основания, углеводы (рибоза и дезоксирибоза) и фосфорную кислоту :

В молекуле ДНК углевод представлен дезоксирибозой, а в молекуле РНК – рибозой, отсюда их названия: дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК) кислоты. Кроме того, они содержат фосфорную кислоту, по два пуриновых и по два пиримидиновых основания; различия только в пиримидиновых основаниях: в ДНК содержится тимин, а в РНК – урацил. В составе ДНК и РНК открыты так называемые минорные (экзотические) азотистые основания (строение некоторых из них приводится далее).

Углеводы (рибоза и дезоксирибоза) в молекулах ДНК и РНК находятся в β-D-рибофуранозной форме:

В составе некоторых фаговых ДНК обнаружена молекула глюкозы, которая соединяется гликозидной связью с 5-оксиметилцитозином.

Основу структуры пуриновых и пиримидиновых оснований составляют два ароматических гетероциклических соединения – пиримидин и пурин :

Молекула пурина состоит из двух конденсированных колец: пиримидина и имидазола.

В составе нуклеиновых кислот встречаются три главных пиримидиновых основания: цитозин, урацил и тимин.

Помимо главных пиримидиновых оснований, в составе нуклеиновых кислот открыты минорные пиримидиновые основания, 5-метил- и 5-окси-метилцитозин, дигидроурацил, псевдоурацил, 1-метилурацил, оротовая кислота, 5-карбоксиурацил, 4-тиоурацил и др. Забегая несколько вперед, укажем, что только для тРНК список минорных оснований приближается к 50. На долю минорных оснований приходится до 10% всех нуклеотидов тРНК, что имеет, очевидно, важный физиологический смысл (защита молекулы РНК от действия гидролитических ферментов). Структурные формулы ряда минорных пиримидиновых оснований представлены в форме нуклеозидов – соединений с углеводным компонентом:

Два пуриновых основания, постоянно встречающихся в гидролизатах нуклеиновых кислот, имеют следующее строение:

К минорным нуклеозидам пуринового ряда, обнаруживаемым в составе ДНК и РНК, относятся инозин, N6-метиладенозин, N2-метилгуанозин, ксантин, гипоксантин, 7-метилгуанозин и др.

Одним из важных свойств свободных азотистых оснований (содержащих окси группы) является возможность их существования в двух таутомерных формах, в частности лактим- и лактамной формах, в зависимости от значения рН среды: при рН 7,0 они представлены в лактамной форме, при снижении величины рН – в лактимной форме. Таутомерные превращения можно представить на примере урацила.

Оказалось, что в составе природных нуклеиновых кислот все окси производные пуринов и пиримидинов находятся в лактамной форме.

О локализации и количественном содержании нуклеиновых кислот в клетках получены определенные данные. Доказано, что количественное содержание ДНК в клетках одного и того же организма отличается удивительным постоянством и исчисляется несколькими пикограммами, однако в клетках разных видов живых организмов имеются существенные количественные различия в содержании ДНК. Хорошо известно также, что ДНК преимущественно сосредоточена в ядре, а в митохондриях и хлоропластах содержится только небольшой процент клеточной ДНК. О количестве РНК нет точных данных, поскольку содержание ее в разных клетках в значительной степени определяется интенсивностью синтеза белка. На долю РНК приходится около 5–10% от общей массы клетки. Современная классификация различных типов клеточной РНК основывается на данных топографии, функции и молекулярной массы.

Выделяют три главных вида РНК: матричную (информационную) – мРНК, которая составляет 2–3% от всей клеточной РНК; рибосомную – рРНК, составляющую 80–85% и транспортную – тРНК, которой около 16%. Эти 3 вида различаются нуклеотид-ным составом и функциями (табл. 3.1).

Матричная РНК (мРНК) синтезируется в ядре на матрице ДНК, затем поступает в рибосому, выполняя матричную функцию при синтезе белка . По предположению акад. А.С. Спирина, часто мРНК при поступлении из ядра в цитоплазму образует со специфическими РНК-связывающими белками комплексы – так называемые информосомы, способные к обратимой диссоциации. Информосомы рассматриваются как транспортная форма мРНК, способствующая образованию полирибосом в цитоплазме. Транспортные РНК (тРНК) имеют небольшую молекулярную массу и содержатся в растворимой фракции цитоплазмы, выполняя функцию переноса аминокислот к месту белкового синтеза – рибосоме. Рибосомные РНК (рРНК), как видно из данных табл. 3.1, имеют разную и значительно большую молекулярную массу. Они локализуются в двух субчастицах рибосом 50S и 30S у Е.coli и 60S и 40S в клетках животных (табл. 3.2).

Субчастица 60S содержит три разных рРНК (5S, 5,8S и 28S рРНК), в то время как субчастица 40S – одну молекулу 18S рPHK. Детально роль рРНК в белковом синтезе пока не выяснена (см. главы 13, 14).

Сохранение информации от поколения к поколению(консерватизм наследственности).

Организмы обладают способностью передавать следующим поколениям свои признаки и особенности, т.е. воспроизводить себе подобных. Это явление наследования признаков основано на передаче из поколения в поколение наследственной информации. Материальным носителем этой информации являются молекулы ДНК.

Передача наследственной информации от одного поколения клеток к другому, от одного поколения организмов к последующему обеспечивается некоторыми фундаментальными свойствами ДНК. Она удваивается в каждом поколении клеток и может неопределенно долго воспроизводиться без каких-либо изменений. Относительно редкие изменения наследственной информации также могут воспроизводиться и передаваться от поколения к поколению.

Генетический код.

Генетический код - способ сохранения наследственной информации в виде последовательности нуклеотидов в молекулах нуклеиновых кислот. Реализация генетического кода в клетке происходит в два этапа: 

1) синтез молекулы матричной, или информационной, РНК (соответственно мРНК, или иРНК) на соответствующем участке ДНК; при этом последовательность нуклеотидов ДНК "переписывается" в нуклеотидную последовательность мРНК.

2) синтез белка при котором последовательность нуклеотидов мРНК переводится в соответствующую последовательность аминокислот.

Впервые идея о существовании генетического кода сформулирована А.Дауном и Дж.Гамовым в 1952-1954, которые показали, что последовательность нуклеотидов, однозначно определяющая синтез той или иной аминокислоты, должна содержать не менее трех звеньев. Позднее было доказано, что такая последовательность состоит из трех нуклеотидов, названных кодоном или триплетом. Т.к. молекулы нуклеиновых кислот, на которых происходит синтез мРНК или белка состоят из остатков только четырех разных нуклеотидов, кодонов, отличающихся между собой, может быть всего 64.

Все синтезируемые в процессе трансляции белки построены из остатков 20 аминокислот (так называемых кодируемых). Какой именно кодон ответствен за включение той или иной аминокислоты, можно определить по таблице, в которой буквы А, Г, У, Ц обозначают основания, входящие в нуклеотиды (соответственно аденин, гуанин, урацил и цитозин): в вертикальном ряду слева - в первый нуклеотид кодона, в горизонтальном ряду сверху - во второй, в вертикальном ряду справа - в третий. Трехбуквенные сочетания, например фен, сер, лей, - сокращенные названия аминокислот. Прочерки в таблице означают, что три кодона - УАА, УАГ и УГА в нормальных условиях не кодируют какие-либо аминокислоты. Такие кодоны называют "бессмысленными", или нонсенс-кодонами. Они являются "сигналами" остановки синтеза полипептидной цепи.

В таблице представлены не все аминокислоты, встречающиеся в белках. В ней нет гидроксипролина и гидроксилизина, содержащихся в коллагене; фосфосерина-компонента всех фосфопротеидов; иодпроизводных тирозина, содержащихся в тиреоглобулине; цистина, который часто встречается в белках, и некоторых других аминокислот. Все они - производные других аминокислот, которые кодируются мРНК. Они образуются в результате модификации белков, происходящей после трансляции.

Генетический код специфичен: это означает, что каждый кодон кодирует только одну аминокислоту. Лишь два кодона, кодирующие валин (ГУГ) и метионин (АУГ), способны выполнять дополнительные функции. Если они находятся в начале считываемой области мРНК, к ним присоединяется транспортная РНК (тРНК), несущая формилметионин, который всегда находится в начале строящейся полипептидной цепи, а по завершении синтеза отщепляется целиком или отщепляет формильный остаток, превращаясь в остаток метионина. Таким образом, кодоны ГУГ и АУГ-инициаторы синтеза полипептидной цепи. Если же они не стоят первыми, то не отличаются по функциям от других кодонов.

Таблица генетического кода

Генетический код называют вырожденным, поскольку 61 кодон кодирует всего 20 аминокислот. Поэтому почти каждой аминокислоте соответствует более чем один кодон. Вырожденность генетического кода неравномерна: для аргинина, серина и лейцина она шестикратна (т.е. для каждой из этих аминокислот имеется по шесть кодонов), тогда как для многих других аминокислот (тирозина, гистидина, фенилаланина и др.) лишь двукратна. Две аминокислоты (метионин и триптофан) представлены единственными кодонами. Кодоны-синонимы почти всегда отличаются друг от друга по последнему из трех нуклеотидов, тогда как первые два совпадают. Таким образом, код аминокислоты определяется в основном первыми двумя "буквами". Вырожденность генетического кода имеет важное значение для повышения устойчивости генетической информации.

С механизмами трансляции связана еще одна особенность генетического кода: он неперекрывающийся. Кодоны транслируются всегда целиком; для кодирования невозможно использование элементов одного из них в сочетании с элементами соседнего. "Рамкой", ограничивающей транслируемый кодон и перемещающейся скачком сразу на три нуклеотида, служит антикодон тРНК, который представляет собой триплет нуклеотидов, комплементарный одному из кодонов и обусловливающий специфичность к нему. Таким образом, наблюдается линейное соответствие между последовательностью кодирующих триплетов и расположением остатков аминокислот в синтезируемом полипептиде, т.е. код имеет линейный непрерывающийся порядок считывания.

Важнейшее свойство генетического кода - его однонаправленность. Кодоны информативны только в том случае, если они считываются в одном направлении - от первого нуклеотида к последующим.

Свойства генетического кода 1. Триплетность — значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон). 2. Непрерывность — между триплетами нет знаков препинания, то есть информация считывается непрерывно. 3. Неперекрываемость — один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов. (Не соблюдается для некоторых перекрывающихся генов вирусов, митохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки). 4. Однозначность (специфичность) — определённый кодон соответствует только одной аминокислоте. (Свойство не является универсальным. Кодон UGA у Euplotes crassus кодирует две аминокислоты — цистеин и селеноцистеин). 5. Вырожденность (избыточность) — одной и той же аминокислоте может  соответствовать несколько кодонов. 6. Универсальность — генетический код работает одинаково в организмах разного уровня сложности — от вирусов до человека (на этом основаны методы генной инженерии).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]