Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
6-15.docx
Скачиваний:
21
Добавлен:
12.03.2015
Размер:
207.19 Кб
Скачать

6. Дифракция Фраунгофера на одной щели.

Рассмотрим схему наблюдения дифракции Фраунгофера, представленную на рис.3. Плоская монохроматическая волна падает нормально на плоскость Щ, где расположена бесконечно длинная щель шириной b (щель можно считать бесконечно длинной, если ее длина намного больше ее ширины. Так при ширине в 0,01 - 0,05 мм длина в несколько миллиметров может считаться бесконечной).

За щелью расположена линза Л, в фокальной плоскости которой находится экран Э. Наличие линзы равносильно тому, что экран расположен как бы на "бесконечном" расстоянии от объекта. Если бы свет распространялся прямолинейно в соответствии с законами геометрической оптики, то в фокальной плоскости линзы получилась бы бесконечно узкая светлая полоса, проходящая через точку N0 на экране Э. Но в соответствии с принципом Гюйгенса-Френеля каждая точка волнового фронта, достигающего плоскости, где расположена щель, является источником вторичных волн. Тогда лучи, идущие от всех этих вторичных источников под некоторым углом j к первоначальному направлению, образуют плоский волновой фронт и соберутся в фокальной плоскости линзы в т.Nj

Расчет поля в плоскости экрана проведём непосредственно на основе принципа Гюйгенса-Френеля. Для этого разобъем открытую часть поверхности щели на зоны в виде узких полосок одинаковой ширины dх, параллельных краям щели. Эти элементарные участки становятся источниками вторичных волн. Амплитуды dA0 этих волн, приходящих в т. Nj на экране от разных полосок, одинаковы, так как все зоны имеют одинаковую площадь и одинаковый к направлению вторичных волн угол j. Эти амплитуды будут пропорциональны произведению амплитуды падающей волны Е0 на размер полоски dx, т.е. : dA0 = CE0 dx, где С - коэффициент пропорциональности.

Амплитуда волны, распространяющейся в направлении j=0, пропорциональна ширине щели b и равна :A0=CE0b.

Интенсивность света определяется квадратом амплитуды, т.е.

где I0 - интенсивность в центре дифракционной картины, u =1/2 kbSinj , k=2p/l - волновое число.

7. Разрешающая способность оптических приборов.

Разрешающая способность (разрешающая сила) оптических приборов, характеризует способность этих приборов давать раздельные изображения двух близких друг к другу точек объекта. Наименьшее линейное или угловое расстояние между двумя точками, начиная с которого их изображения сливаются, называется линейным или угловым пределом разрешения. Обратная ему величина обычно служит количественной мерой Разрешающая способность (в оптике) Вследствие дифракции света на краях оптических деталей даже в идеальной оптической системе (т. е. безаберрационной; см. Аберрации оптических систем) изображение точки есть не точка, а кружок с центральным светлым пятном, окруженным кольцами (попеременно тёмными и светлыми в монохроматическом свете, радужно окрашенными - в белом свете). Теория дифракции позволяет вычислить наименьшее расстояние, разрешаемое системой, если известно, при каких распределениях освещённости приёмник (глаз, фотослой) воспринимает изображения раздельно. Согласно Рэлею (1879), изображения двух точек одинаковой яркости ещё можно видеть раздельно, если центр дифракционного пятна каждого из них пересекается краем 1-го тёмного кольца другого (рис.). В случае самосветящихся точек, испускающих некогерентные лучи, при выполнении этого критерия Рэлея наименьшая освещённость между изображениями разрешаемых точек составит 74% своего максимального значения, а угловое расстояние между центрами дифракционных пятен (максимумами освещённости) Dj = 1,21 lID, где l - длина волны света, D - диаметр входного зрачка оптической системы (см. Диафрагма в оптике). Если f - фокусное расстояние оптической системы, то линейная величина рэлеевского предела разрешения s = 1,21 lflD. Предел разрешения телескопов и зрительных труб выражают в угловых секундах (см. Разрешающая сила телескопа), для длины волны l @ 560 нм, соответствующей максимальной чувствительности человеческого глаза, он равен a"= 140/D (D в мм). Для фотообъективов Разрешающая способность (в оптике) обычно определяют как максимальное количество раздельно видимых линий на 1 мм изображения стандартного тест-объекта (см. Мира) и вычисляют по формуле N = 1470e, где e - относительное отверстие объектива (см. также Разрешающая способность фотографирующей системы; о Разрешающая способность (в оптике) микроскопов см. в ст. Микроскоп). Приведённые соотношения справедливы лишь для точек, находящихся на оси идеальной оптической системы. Наличие аберраций и погрешностей изготовления увеличивает размеры дифракционных пятен и снижает Разрешающая способность (в оптике) реальных систем, которая, кроме того, уменьшается по мере удаления от центра поля зрения. Разрешающая способность (в оптике) оптического прибора Roп, в состав которого входят оптическая система с Разрешающая способность (в оптике) Roc и приёмник света (фотослой, катод электроннооптического преобразователя и пр.) с Разрешающая способность (в оптике) Rп, определяется приближённой формулой 1/Roп = 1/Roc + 1/Rп, из неё следует, что целесообразно использовать лишь сочетания, в которых Roc и Rп - величины одного порядка. Разрешающая способность (в оптике) прибора может быть оценена по его аппаратной функции, отражающей все факторы, влияющие на качество изображения (дифракцию, аберрации и т.д.). Наряду с оценкой качества изображения по Разрешающая способность (в оптике) широко распространён метод его оценки с помощью частотно-контрастной характеристики. О Разрешающая способность (в оптике) спектральных приборов см. в ст. Спектральные приборы.

Распределение освещённости Е в изображении двух точечных источников света, расположенных так, что угловое расстояние Dj между максимумами освещённости равно угловой величине D радиуса центрального дифракционного пятна (Dj = D - условие Рэлея).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]