Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
новая папка / Динамика острого воспалительного процесса.docx
Скачиваний:
8
Добавлен:
18.10.2023
Размер:
158.3 Кб
Скачать

1/ Описание медиаторов воспаления и, в частности, медиаторов арахидонового каскада, смотри в разделе «3.2.1.1. Медиаторы воспаления»

 цитоплазмы и клеточных органелл. Клетки лизируются («самоперевариваются») и фермен-

ты лизосом (протеазы, липазы, гликозидазы, фосфатазы) выходят в межклеточную среду, нанося повреждение и другим близлежащим клеткам. Повреждение митохондрий резко нарушает энергообмен клеток, тормозится процесс окислительного фосфорилирования, снижается синтез АТФ. Энергетическое голодание клеток так же способно привести к их гибели. Кроме того, повреждение митохондрий нарушает утилизацию ими жирных кислот и, при определенных условиях, стимулировать образование в митохондриях  активных кислородных радикалов – активных форм кислорода (АФК), повреждающее воздействие на клетки которых хорошо известно.

      Гипоксия и, следующий за нею, гипоксический некробиоз клеток повреждают не только такие клеточные органеллы как лизосомы и митохондрии. Разрушается цитоскелет клеток, гладкий и шероховатый эндоплазматический ретикулум, другие клеточные органеллы.

     Подведем некоторые итоги. Первичная альтерация – это повреждение и гибель клеток в результате непосредственного воздействия на ткань любого повреждающего фактора. В результате этого процесса в межклеточную среду выходят или образуются в ней многочисленные биологически активные вещества, способные сами по себе, уже в условиях прекращения действия повреждающего фактора, продолжать разрушать клетки и другие межклеточные структуры. Иначе говоря, вслед за первичной альтерацией начинает развиваться вторая фаза альтерации – вторичная альтерация.

     Большинство биологически активных веществ как разрушающих клетки и межклеточные структуры, так и участвующих в регуляции воспалительного процесса в целом, выделяются, активируются и начинают осуществлять свое действие именно во время развития вторичной альтерации. Эти биологически активные вещества получили название медиаторов воспаления. Рассмотрим основные медиаторы воспаления.

3.2.1.1. Медиаторы воспаления

     Существует достаточно много классификаций медиаторов воспаления. В качестве примера приведем следующие классификации медиаторов: по их химическому строению, по скорости включения в процесс воспаления, по принципу действия – прямому или опосредованному (в первом случае медиатор участвует в регуляции воспалительного процесса  как непосредственно действующее вещество, во втором – является источником высвобождения или образования некоего другого медиатора). Однако наиболее традиционной и часто применимой патологами и клиницистами является разделение медиаторов на две группы: медиаторы клеточные и медиаторы гуморальные (или плазменные).

     Медиаторы, относящиеся к первой группе, появляются в очаге воспаления или при разрушении соответствующих клеток, или секретируются (выделяются) ими в результате воздействия на них повреждающего фактора или определенных биологически активных веществ. Медиаторы второй группы образуются в плазме крови (поэтому они и называются «плазменными») в ходе некоторых биохимических процессов, которые инициируются рядом факторов воспаления.

     Характерной чертой всех клеточных медиаторов является то, что они образуются практически сразу же после воздействия на ткань повреждающих факторов воспаления и действуют локально, то есть непосредственно в зоне контакта повреждающего фактора с тканью.

     Образование гуморальных (плазменных) медиаторов происходит через определенный промежуток времени после воздействия повреждающего фактора (каждой биохимической реакции требуется время для ее завершения). Кроме того, гуморальные медиаторы, за счет их образования в плазме крови, обладают более системным действием, чем клеточные медиаторы.

     Рассмотрим основные медиаторы, имеющие клеточное происхождение.

    Гистамин Этот медиатор воспаления синтезируется и гранулируется в тучных клетках (лаброцитах) и в базофилах. Гистамин синтезируется из гистидина под влиянием фермента гистидиндекарбоксилазы. По химическому строению гистамин относится к группе биогенных аминов.

     Описано существование гистамина в трех формах: связанный, лабильный и свободный. Связанный гистамин может освобождаться только при разрушении клетки-носителя, лабильный высвобождается при действии на тучные клетки либераторов гистамина (например, лизосомальных ферментов), вызывающих их дегрануляцию. В дегрануляции лаброцитов и движении гранул к мембране клетки принимают участие ионы Са++, которые активируют внутриклеточные микромиофиламенты, с помощью которых гранулы доставляются к плазматической мембране.   Свободный гистамин содержится в органах и тканях лишь в незначительном количестве.

     Так как тучные клетки располагаются в непосредственной близости от микрососудов, эффекты гистамина сказываются, прежде всего, именно на них, причем от времени действия повреждающего фактора на ткань и до начала секреции гистамина проходит всего несколько секунд.  Расширение сосудов осуществляется за счет действия гистамина на Н1 и Н2 гистаминорецепторы (в основном – через Нгистаминорецепторы). В стадию артериальной гиперемии гистамин обеспечивает повышенный приток крови к очагу воспаления за счет раскрытия прекапиллярных сфинктеров, расширения капилляров и, особенно, посткапиллярных венул. Второе важное направление действия гистамина – повышение проницаемости микрососудов за счет увеличения подвижности эндотелиальных клеток, их округления и, вследствие этого, появления промежутков между ними. Помимо этого гистамин стимулирует фагоцитоз, усиливает хемотаксис фагоцитов и митогенез лимфоцитов. Следует указать, что действие гистамина весьма краткосрочно, так как он очень быстро разрушается соответствующими ферментами, и в дальнейшем сосудистые реакции в очаге воспаления поддерживаются другими медиаторами.

     Серотонин (5-гидрокситриптамин). Этот медиатор воспаления образуется из триптофана путем декарбоксилирования. По химическому строению относится к группе биогенных аминов. У человека серотонин содержится в тромбоцитах и тучных клетках кожи. Высвобождение серотонина из клеток-носителей происходит или при их разрушении, или под влиянием некоторых биологически активных веществ (например, тромбина, АДФ, фактора активации тромбоцитов - ФАТ). В очаге воспаления серотонин обеспечивает расширение артериол и повышает проницаемость микрососудов. Кроме того, серотонин способствует спазму венул и тромбообразованию в этих посткапиллярных сосудах, что и обеспечивает развитие венозной гиперемии при воспалении.

     Ферменты лизосом. Лизосомы тканевых клеток, а также гранулоцитов, тучных клеток и базофилов играют важную роль в развитии воспалительного процесса. При разрушении тканевых клеток под влиянием повреждающих факторов воспаления, а также в результате фагоцитоза и клеточного киллинга, ферменты лизосом (протеазы, липазы, фосфатазы, гликозидазы) выходят в межклеточную среду, где становятся одним из основных факторов вторичной альтерации и экссудации, так как ферменты, содержащиеся в этих органеллах, способны дегранулировать тучные клетки, активировать кининовую систему плазмы крови и, за счет действия фосфолипаз, запускать каскад образования ряда биологически активных веществ, синтезирующихся из фосфолипидов клеточных мембран. Именно поэтому лизосомы принято называть «пусковыми площадками воспаления». Кроме того, лизосомные ферменты являются инициаторами образования таких мощных факторов вторичной альтерации как активные кислородные радикалы (АКР).

     Велико значение ферментов лизосом и в процессе повышения проницаемости микрососудов в очаге воспаления. С одной стороны, они влияют на этот процесс косвенно (дегрануляция тучных клеток, активация кининовой системы и арахидонового каскада), а с другой – непосредственно, за счет разрушения (перфорации) базальной мембраны микрососудов (фермент лизосом – химаза способна разрушать хондроитинсульфаты, входящие в состав соединительно-тканного вещества базальной мембраны). Следует иметь в виду, что большинство лизосомальных ферментов наиболее активны в кислой среде, которая и характерна для очага острого воспаления.

     Активные кислородные радикалы (АКР) принимают активное участие в повреждении клеток и внеклеточных структур в процессе вторичной альтерации. По современным представлениям свободный радикал (в том числе – и АКР) – это атом или молекула, имеющие неспаренный электрон на внешней орбите. В частности, этими свойствами обладают  супероксидный анион – О2+ - и синклетный кислород – 1О2. Повышенная окислительная способность придает свободным радикалам особую химическую агрессивность и позволяет им не только активно вступать в реакции с клеточными структурами (например, при перекисном окислении липидов мембран клетки), но и превращать молекулы клеточных структур в новые свободные радикалы. Так возникает своеобразная «цепная реакция» генерирования свободных радикалов в клетке. Возникая в очаге воспаления во время и благодаря процессам вторичной альтерации, АКР разрушают клетки не избирательно, но действуют даже и на те клеточные образования, которые не имеют достаточной антиоксидантной защиты и находятся на некотором отдалении от зоны воспаления.

     Производные арахидоновой кислоты (эйкозаноиды). В очаге воспаления производные арахидоновой кислоты (эйкозаноиды) синтезируются под влиянием фосфолипазы А2, лизирующей фосфолипиды мембран клеток и становящейся особенно активной при избытке ионов Са++, которые в больших количествах освобождаются из погибших клеток. Чаще всего сигналом для активации фосфолипазы Аслужит воздействие на клетки ферментов лизосом. Образовавшаяся из фосфолипидов арахидоновая кислота под влиянием двух ферментов липооксигеназы и циклооксигеназы расщепляется, образуя две группы биологически активных веществ: простагландинов и лейкотриенов.

     Функции простагландинов весьма обширны. Так, простагландины группы Е вызывают расширение сосудов, потенцируя действие гистамина и серотонина, обладают хемотаксическим действием по отношению к поли - и мононуклеарам крови. На стадии же пролиферации простагландины этой группы усиливают синтез коллагена фибробластами. Участвуя в сложных взаимоотношениях с рядом цитокинов, простагландины этой группы возбуждают лихорадочную реакцию.

     Другие производные арахидоновой кислоты – лейкотриены (фракции В4, С4, D4, Е4). При развитии воспаления лейкотриены повышают сосудистую проницаемость, увеличивают активность клеток – естественных киллеров. Побочным и весьма неприятным эффектом действия лейкотриенов является их влияние на гладкую мускулатуру внутренних органов.

В частности, лейкотриены вызывают бронхоспазм.

     К гуморальным (плазменным) медиаторам воспаления относятся следующие биологически активные вещества:

     Плазменная система кининов. В целом, образование и метаболизм кининов в очаге воспаления можно представить следующим образом. При повреждении стенок микрососудов в процессе развития вторичной альтерации, активируется XII фактор системы свертывания крови (фактор Хагемана). Функции фактора Хагемана весьма разнообразны. Во-первых, он является одним из необходимых участников процесса свертывания крови, то есть образования тромбов на стенках микрососудов. Во-вторых, при его участии активируется фермент плазмин, благодаря которому запускается система фибринолиза. И, наконец, в-третьих, при его содействии протеолитические ферменты, входящие в группу калликреинов (калликреин-1, калликреин-2) и находящиеся в неактивном состоянии в форме прекалликреинов (калликреиногенов), активируются и, далее, обеспечивают превращение кининогена (a2-глобулина плазмы крови) в активные кинины (брадикинин и каллидин).

     Активные кинины выполняют функцию вазодилатации и повышения проницаемости сосудов и довольно быстро разрушаются под действием разнообразных кининаз. Однако существует и своеобразный порочный круг: кинины активируют фактор Хагемана, а он, в свою очередь, участвует в переводе кининов в активную форму. Кроме того, есть данные о том, что в процессе активации кининов участвует гистамин, протеазы распадающихся при воспалении клеток, катионные белки лейкоцитов и некоторые другие вещества, образующиеся в очаге воспаления.

     Система комплемента.  Система комплемента – это часть иммунной системы, осуществляющая неспецифическую защиту от бактерий и других, вредных для организма антигенов. Она состоит более чем из 20 различных белков — факторов (компонентов) комплемента, находящихся в плазме крови и составляющих около 4% от всех белков плазмы.

     Система комплемента участвует в регуляции воспалительного процесса следующими тремя способами:

     хемотаксис: факторы комплемента могут привлекать иммунные клетки, которые фагоцитируют бактерии;

     - лизис: компоненты комплемента воздействуют на бактериальные мембраны и лизируют (растворяют) бактерии;

     опсонизация: компоненты комплемента, воздействуя на бактериальные клетки, облегчают их фагоцитирование.

     Компоненты комплемента с С1 по С9 (С – от английского слова. complement) участвуют в так называемом «классическом пути» активации комплемента. Факторы В и D активируют «альтернативный путь» (Рис. 1). Другие компоненты системы комплемента обладают регуляторными функциями.

                      Рис. 1. Механизм действия системы комплемента в очаге воспаления

     Классический путь начинается связыванием компонента C1 с несколькими молекулами иммуноглобулинов (IgG или с IgM) на поверхности бактерии. На альтернативном пути происходит связывание фактора В, например, с бактериальными липополисахаридами. Оба пути ведут к разделению компонента С3 комплемента на два фрагмента, обладающих различными функциями. Меньший фрагмент С принимает участие в воспалительном процессе, обуславливая хемотаксическое привлечение лейкоцитов к очагу воспаленияБолее крупный фрагмент С3b «запускает» цепь реакций, приводящих к образованию так называемого мембраноатакующего комплекса комплемента.

     Мембраноатакующий комплекс — это ионный канал в плазматической мембране бактериальной клетки, в образовании которого участвуют компоненты системы комплемента С3b, С5b, С6, С7, С8 и С9. В результате этой «атаки» меняются осмотические параметры бактериальной клетки, в неё входит большое количество воды, в результате чего возникает «осмотический взрыв» бактериальной клетки, и она гибнет.

     Система комплемента контролируется её ингибиторами в плазме крови, которые блокируют избыточную активность этой системы.

     Цитокины. Помимо указанных выше медиаторов воспаления, значительную роль в раз­витии и регуляции воспалительной реакции  играют цитокины – низкомолекулярные 6елки (полипептиды или гликополипептиды с молекулярным весом 5-30 кДа), лишенные антигенной специфичности и являющиеся посредниками межклеточ­ных взаимоотношений при воспалении, формировании иммунного ответа организ­ма, гемопоэзе и ряде других межклеточных и межсистемных взаимодействий. Цитокины нельзя отнести и к клеточным медиаторам воспаления, и к гуморальным. Они занимают особую «нишу» в регуляции воспаления.

Несмотря на весьма значительные функ­циональные различия цитокинов, их о6ъеди­няют несколько важных признаков. Так, для цитокинов характерна функциональная вза­имозаменяемость. Кроме того, при участии в регуляционных процессах цитокины спо­собны к синергuзму uлu к антагонизму. Не­которые цитокины могут индуцировать син­тез других цитокинов, активируя для этого соответствующие клетки иммунной систе­мы. Все цитокины обладают коротким периодом  действия.

Существует несколько классификаций цитокиновОднако наиболее обоснованной нам видится следующая:

     - Интерлейкuны (IL). В настоящее время описано 18 видов (от IL-1 до IL-18) интерлейкинов.

- Колонuестuмулuрующuе факторы (CSFs). Эти цитокины являются факторами роста гемопоэза (лимфопоэза, монопоэза, гранулопоэза).

- Интерфероны (IFNs). Интерфероны активируют естественные клетки-киллеры, инги6ируют репродукцию вирусов и могут участвовать в генерации ряда других цито­кинов, активируя соответствующие клетки иммунной системы.

- Факторы некроза опухолей (TNFs). Из многочисленных функций этих цитоки­нов следует выделить их способность про­тивостоять инфекционному началу и о6ла­дание противоопухолевой активностью.

- Хемокuны. Основной функцией мно­гих цитокинов, входящих в эту группу, явля­ется стимуляция хемотаксиса практически всех клеток иммунной системы.

Как и каждая классификация, приведен­ное выше разделение цитокинов на некие функционально однородные группы - весь­ма условно. Так, интерлейкины 3, 7 и 11, по­мимо выполнения других функций, участву­ют в гемопоэзе, а интерлейкины 8 и 16 о6ес­печивают хемотаксис нейтрофилов, Т-лим­фоцитов, 6азофилов и эозинофилов.

Оценивая роль цитокинов в воспалитель­ном процессе, следует указать на одну важ­ную особенность этих межклеточных пос­редников. В настоящее время можно выде­лить две группы цитокинов, одна из которых обладает провоспалuтельным действuем, а другая протuвовоспалuтельным.

Провоспалuтельным действuем обла­дают интерлейкины 1, 6, 8, 12, 17, 18, гамма­-интерферон, факторы некроза опухолей аль­фа и бета, фактор гемопоэза GM-CSF.

Протuвовоспалuтельным действuем обладают инги6итор интерлейкина 1 - IL-1ra, интерлейкин 10, трансформирующий фактор роста - бета (TGFb), интерфероны альфа, бета и дельта.

     Провоспалительные эффекты цитокинов связаны с их возможностями активировать клетки иммунной системы, способствовать их дифференцировке, стимулировать выра­ботку иммуноглобулинов, обеспечивать ад­гезию и хемотаксис фагоцитов. С другой сто­роны, чрезмерная активность провоспалительных цитокинов, недостаточное действие их инги6иторов и антагонистов может при­водить к значительной деструкции тканей, росту альтерации. Не6лагоприятна роль про­воспалительных цитокинов и при развитии хронического воспаления.

Протuвовоспалительные цитокины ог­раничивают развитие воспалительного процесса. Так, IL-1ra инги6ирует действие ин­терлейкина 1; интерлейкин 10 инактивирует макрофаги; TGF-b подавляет активность кле­ток - естественных киллеров, снижает про­лиферацию В- и Т-лимфоцитов, инги6ирует макрофагальный киллинг внутриклеточных паразитов; интерфероны альфа, 6ета и дельта, в противоположность гамма-интерферону, об­ладают противовоспалительной активностью.

При не осложненном течении воспали­тельного процесса про- и противовоспали­тельные цитокины как 6ы уравновешивают друг друга, действуя на 6лаго организма. Смещение же этого 6аланса в лю6ую сторо­ну может привести только к разрастанию па­тологии: мощной альтерации тканей или же к длительному, вяло текущему хроническо­му воспалению, зачастую осложняющемуся аутоиммунными процессами.

В заключение следует указать, что ряд цитокинов (интерлейкины 1 и 6, фактор нек­роза опухолей альфа, гамма-интерферон) яв­ляются эндогенными пирогенами, т.е. веще­ствами, вызывающими лихорадочную реак­цию, как правило, сопровождающую воспа­ление.

     Белки острой фазы воспаления. В патофизиологии и клинике  принято называть реакцию организма, следующую непосредственно вслед за альтерацией и направленную на восстановление гомеостаза организма, «реакцией острой фазы воспаления», а ряд биологически активных веществ, вырабатывающихся в этот период, «белками острой фазы».

     К числу факторов, способных индуцировать реакцию острой фазы, относятся бактериальные и, в меньшей степени, вирусные инфекции, травмы, ожоги, злокачественные новообразования, тканевые инфаркты, воспалительные состояния. Реакция острой фазы включает такие клинические признаки и симптомы как сонливость, анорексию, изменения синтеза белков плазмы и синтеза некоторых гормонов.

     Однако, прежде всего, острофазовая реакция характеризуется изменениями концентрации в плазме крови некоторых секреторных белков, вырабатываемых гепатоцитами при действии на печень цитокинов и некоторых гормонов. При этом основными индуктороми синтеза острофазных белков считается интерлейкин 1, интерлейкин 6, интерлейкин 11, гамма-интерферон, фактор некроза опухолей.  Белки острой фазы, число которых весьма велико (более 20)  разделяются на две группы: позитивные острофазные белки (концентрация их в плазме крови в процессе развития острофазовой реакции увеличивается в сотни и тысячи раз) и негативные острофазовые белки  (их концентрация в плазме крови в процессе развития острофазовой реакции не изменяется, или даже уменьшается по сравнению с нормой).

     Одной из основных функций острофазовых белков является модуляция воспалительной реакции и регенерации тканей. К «главным» белкам острой фазы относят С-реактивный белок и сывороточный амилоид А, концентрация которых в плазме крови после повреждения (воспаление, травма) в течение 6 – 8 часов возрастает в 100 – 1000 раз. С-реактивный белок способен связывать широкий спектр лигандов-компонентов микроорганизмов, токсинов, частиц поврежденных тканей, препятствуя тем самым их распространению. Кроме того, продукты такого взаимодействия активируют комплемент по классическому пути, стимулируя процессы фагоцитоза и элиминации вредных продуктов. С-реактивный белок может взаимодействовать с Т-лимфоцитами, фагоцитами и тромбоцитами, регулируя их функции в процессе воспаления. По видимому, белки острой фазы и некоторые пирогенные цитокины связаны между собой регуляционной обратной связью Так, С-реактивный белок вызывает увеличение синтеза фактора некроза опухолей макрофагами.

     Следует указать, что С-реактивный белок обладает выраженными противовоспалительными функциями. В частности, он способен снижать высвобождение провоспалительных цитокинов из моноцитов, блокировать высвобождение фактора некроза опухолей из лейкоцитов ингибировать выработку тромбина и предохранять целостность сосудистого эпителия от альтерирующего воздействия на него медиаторов и цитокинов.

     Сывороточный амилоид А способен усиливать адгезивность и хемотаксис фагоцитарных клеток и лимфоцитов. Кроме того, сывороточный амилоид А участвует в окислении липопротеинов низкой плотности и, тем самым, обладает антиатерогенным действием.

     Таким образом, белки острой фазы при развитии местного острого воспаления регулируют его развитие, не допуская чрезмерной альтерации тканей и не допускают генерализации воспалительного процесса за счет своей противовоспалительной активности.

Соседние файлы в папке новая папка