Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

физика

.rtf
Скачиваний:
41
Добавлен:
22.02.2015
Размер:
380.68 Кб
Скачать

. Проверка гипотез

Положим, есть два статис­тических распределения некоторых случайных величин X и Y. Пусть генеральные средние этих распределений с доверительной вероятностью р — 0,95 находятся в доверительных интервалах в ± zx) и (ув ± еу), и пусть при этом ув > хв. Если соблюдается нера­венство (ув - Су) > (хв + е^.), то не вызывает сомнения, что случай­ная величина Y существенно больше случайной величины X (см. рис. 3.3, а). Вероятность этого превышает 0,95.

Условием сущест­венности различия двух опытных распределений, являющихся вы­борками из различных генеральных совокупностей, является вы­полнение следующего неравенства для опытного и теоретического значений критерия Стьюдента: ton > fTeop. Для нахождения значе­ния t используют следующую формулу

:

Здесь ахп ау — выборочные средние квадратические отклоне­ния, пх и пу — число вариант в выборках (объемы выборок), хв и ув — выборочные средние значения. Теоретическое значение treop находят по таблице, входными величинами которой являются доверительная вероятность р и па­раметр f, связанный с числом вариант в выборках. Этот параметр определяют следующим образом. Если а ~ а„, то f = и + пп - 2.Используя этот способ оценки достоверности различия выбо­рочных средних значений двух выборок, следует придерживаться такой последовательности действий. Во-первых, по эксперимен­тальным данным нужно найти значения выборочных средних и средних квадратических отклонений для каждой выборки. За­тем, сравнив величины от и а , найти величину f. После этого еледует задать определенное значение доверительной вероятности и по таблице 10 найти t . Затем по формуле рассчитать t .

Если при сравнении теоретического и опытного критериев Стью- дента окажется, что ton > £теор, то различие между выборочными средними значениями случайных величин X и Y можно считать существенным с заданной доверительной вероятностью. В проти­воположном случае различия несущественны.

Представленный выше способ оценки достоверности различий выборок по выборочным средним является довольно простым. Су­ществует большое число тестов и критериев для сравнения выбо­рок и составления заключения о достоверности их различий. Как правило, при этом рассматривают вероятность двух взаимоисклю­чающих гипотез. Одна из них, условно называемая «нулевой» ги­потезой, заключается в том, что наблюдаемые различия между вы­борками случайны (т. е. фактически различий нет). Альтернатив­ная гипотеза означает, что наблюдаемые различия статистически достоверны. При этом для оценки обоснованности вывода о досто­верности различий используют три основных доверительных уров­ня, при которых принимается или отвергается нулевая гипотеза. Первый уровень соответствует уровню значимости Р0 < 0,05; для второго уровня Р0 < 0,01. Наконец, третий доверительный уровень имеет ро < 0,001. При соблюдении соответствующего условия ну­левая гипотеза считается отвергнутой. Чем выше доверительный уровень, тем более обоснованным он считается. Фактически значи­мость вывода соответствует вероятности р = 1 - Р0. В медицинских и биологических исследованиях считают достаточным уже первый уровень, хотя наиболее ответственные выводы предпочтительнее делать с большей точностью. Одной из методик, позволяющих су­дить о достоверности различий статистических распределений, яв­ляется ранговый тест Уилкоксона. Под рангом (Д;) понимают но­мер, под которым стоят исходные данные в ранжированном ряду. Если в двух сравниваемых выборках данному номеру соответству­ют одинаковые варианты, то рангом этих вариант является сред­нее арифметическое двух рангов — данного и следующего за ним.

Корреляционная зависимость. Уравнения регрессии

При изучении объектов в биологии и медицине приходится иметь дело с функциональными связями другого рода. При этом определенному значению одного признака соответствует не одно значение другого, а целое распределение значений. Такая связь называется корреляционной связью, или просто корреляцией. Корреляционная связь, например, между возрастом и ростом де­тей выражается в том, что каждому значению возраста соответст­вует определенное распределение роста (а не одно единственное значение). При этом с увеличением возраста (до определенных пределов) возрастает и среднее значение роста.

Количественную характеристику взаимосвязи изучаемых при­знаков можно дать на основании вычисления показателя силы связи между ними (коэффициента корреляции) и определения за­висимости одного признака от изменений другого (уравнения рег­рессии). Коэффициент корреляции определяет не только степень, но и направление связей между величинами. Если отсутствие функциональной зависимости между величинами условно соот­ветствует нулевой корреляции, а полная функциональная зависи­мость — корреляции, равной единице, то сила корреляционной связи, вообще говоря, измеряется промежуточными значениями (от 0 до +1). При этом при положительном коэффициенте корре­ляции с увеличением одной величины возрастает и другая. Если же коэффициент корреляции отрицателен, то возрастание одного параметра сопровождается уменьшением другого. В простом случае при линейной зависимости между исследуе­мыми параметрами используют коэффициент корреляции Бравэ—Пирсона. Рассчитанный коэффициент корреляции срав­нивают с теоретическим, который находят в специальной таблице с учетом определенного уровня значимости и объема выборки Входными значениями таблицы являются число пар ис­следуемых признаков (п) и уровень значимости (0,05 или 0,01). При этом нулевая гипотеза заключается в том, что корреляцион­ной связи между исследуемыми параметрами не существует. Если получают значения коэффициента корреляции больше таблично­го, с определенной степенью вероятности полагают, что корреля­ция в генеральной совокупности отличается от нуля.

Количественное представление зависимости изменений одного признака от изменений другого позволяет получить показатели регрессии. Как правило, анализ регрессии начинают с графиче­ского изображения данных. При большом числе исходных дан­ных для выявления общей закономерности вычисляются средние значения одного признака (у) в группах (классах), соответствую­щих определенному интервалу значений другого признака (х). При построении графика по усредненным данным точки на гра­фике располагаются вдоль так называемой эмпирической линии регрессии. Затем проводят подбор и составление уравнения рег­рессии. С помощью такого уравнения можно теоретически рас­считать значения, которые должен принимать один признак при определенных значениях другого (уравнение прогноза).

Если предполагается существование линейной зависимости между исследуемыми признаками (линейная регрессия), то про­водить регрессионный анализ наиболее просто. Часто при этом применяют графический метод. Для проведения линии регрессии используют прозрачную линейку, придавая ей такое положение, чтобы выше и ниже предполагаемой линии регрессии оказалось приблизительно одинаковое число эмпирических точек. На полу­ченной прямой определяют координаты двух наиболее отдален­ных точек xv уг и х2, у2- Затем составляют систему двух уравне­ний:

у1 = а + bxv у2 = а + bх2.

Из полученной системы уравнений определяют неизвестные а и b: b =2 - ул)/(х2 - хг), а = уу - bхх = у2 - bх2. Наконец, при из­вестных коэффициентах а и Ь записывают уравнение прогноза, на основании которого можно рассчитать значение параметра у при известном значении х.

Задача корреляционного анализа сводится к установлению направления и формы связи между признаками, измерению ее тесноты и к оценке достоверности выборочных показателей корреляции. Корреляционная связь между признаками может быть линейной и криволинейной (нелинейной), положительной и отрицательной.  Прямая корреляция отражает однотипность в изменении признаков: с увеличением значений первого признака увеличиваются значения и другого, или с уменьшением первого уменьшается второй. Обратная корреляция указывает на увеличение первого признака при уменьшении второго или уменьшение первого признака при увеличении второго. Например, больший прыжок и большее количество тренировок — прямая корреляция, уменьшение времени, затраченного на преодоление дистанции, и большее количество тренировок — обратная корреляция.

В практических исследованиях возникает необходимость аппроксимировать (описать приблизительно)диаграмму рассеяния математическим уравнением. То есть зависимость между переменными величинами Yи Х можно выразить аналитически с помощью формул и уравнений и графически в виде геометрического места точек в системе прямоугольных координат. График корреляционной зависимости строится по уравнениям функции  и , которые называются регрессией (термин “регрессия” происходит от лат. regressio — движение назад). Здесь  и  — средние арифметические из числовых значений зависимых переменных Y и X. Для выражения регрессии служат эмпирические и теоретические ряды, их графики — линии регрессии, а также корреляционные уравнения (уравнения регрессии) и коэффициент линейной регрессии. Показатели регрессии выражают корреляционную связь двусторонне, учитывая изменение средней величины признака Y при изменении значений xi признака X, и, наоборот, показывают изменение средней величины  признака Х по измененным значениям yi признака Y. Исключение составляют временные ряды, или ряды динамики, показывающие изменение признаков во времени. Регрессия таких рядов является односторонней. Ряды регрессии, особенно их графики, дают наглядное представление о форме и тесноте корреляционной связи между признаками,в чем и заключается их ценность. Форма связи между показателями, влияющими на уровень спортивного результата и общей физической подготовки занимающихся физической культурой и спортом, может быть разнообразной. И поэтому задача состоит в том, чтобы любую форму корреляционной связи выразить уравнением определенной функции (линейной, параболической и т.д.), что позволяет получать нужную информацию о корреляции между переменными величинами Y и X, предвидеть возможные изменения признака Y на основе известных изменений X, связанного с Y корреляционно.

Механические колебания и волны

Повторяющиеся движения или изменения состояния называ­ют колебаниями (переменный электрический ток, движение маятника, работа сердца и т. п.). Всем колебаниям, независи­мо от их природы, присущи некоторые общие закономер­ности. В зависимости от характера взаимодействия колеблю­щейся системы с окружающими телами различают колебания свободные, вынужденные и автоколебания. Колебания рас­пространяются в среде в виде волн. В данной главе рассмат­риваются механические колебания и волны.

. Свободные механические колебания (незатухающие и затухающие)

Свободными (собственными) колебаниями называют такие, которые совершаются без внешних воздействий за счет первона­чально полученной телом энергии. Характерными моделями та­ких механических колебаний являются материальная точка на пружине (пружинный маятник) и материальная точка на нерас­тяжимой нити (математический маятник).

В этих примерах колебания возникают либо за счет первона­чальной потенциальной энергии (отклонение материальной точки от положения равновесия и движение без начальной скорости), либо за счет кинетической (телу сообщается скорость в начальном положении равновесия), либо за счет и той и другой энергии (со­общение скорости телу, отклоненному от положения равновесия).

Рассмотрим пружинный маятник. В положении равновесия упругая сила F1 уравновешивает силу тяжести mg. Если оттянуть пружину на расстояние х, то на мате­риальную точку будет действовать большая упругая сила. Изме­нение значения упругой силы (F), согласно закону Гука, пропор­ционально изменению длины пружины или смещению х точки:

F = -kx,

где k — коэффициент пропорциональности между силой и смеще­нием, который в данном случае является жесткостью пружины; знак минус показывает, что сила всегда направлена в сторону по­ложения равновесия: F < 0 при х > О, F > 0 при х < 0.

Другой пример. Математический маятник отклонен от положения равновесия на такой небольшой угол а, чтобы мож­но было считать траекторию движения материальной точки пря­мой линией, совпадающей с осью ОХ. При этом выполняется при­ближенное равенство:

а= sin tg а ~ у,

где х — смещение материальной точки относительно положения равновесия, I — длина нити маятника.

На материальную точку действуют сила натяжения нити Fu и сила тяжести mg, модуль их равнодействующей равен

= mg tg a = mgj = kx,

где k — коэффициент пропорциональности между силой и смеще­нием

Сравнивая видим, что в этом примере равнодейст­вующая сила подобна упругой, так как пропорциональна смеще­нию материальной точки и направлена к положению равновесия. Такие силы, неупругие по природе, но аналогичные по свойствам силам, возникающим при малых деформациях упругих тел, на­зывают квазиупругими.

На материальные точки, рассмотренные в этих примерах, кро­ме упругой и квазиупругой силы действует и сила сопротивления (трения), модуль которой обозначим F

При преобразовании дифференциального уравнения гармониче­ского колебания величина со0 была введена формально [см. (5.6)],

однако она имеет важный физический смысл, так как определяет , „ юп

частоту колебании v = — системы и показывает, от каких факто-

ров (параметров) эта частота зависит: от жесткости пружины и массы в одном примере, длины нити и ускорения свободного паде­ния в другом.

период колебаний пружинного ма­ятника

период колебаний математического маятника

Затухающие колебания. В реальном случае на колеблющее­ся тело действуют силы сопротивления (трения), характер движе­ния изменяется, и колебание становится затухающим. Для того чтобы из уравнения найти временную зависимость затухаю­щего колебания, необходимо знать, от каких параметров и как за­висит сила сопротивления. Обычно предполагают, что при не очень больших амплитудах и частотах эта сила пропорциональна скорости движения и, естественно, направлена противоположно скорости: Fc = -rv, где г — коэффициент трения (сопротивления), характеризующий свойства среды оказывать сопротивление.

Применительно к одномерному движению последней формуле придадим следующий вид:

Быстрота убывания амплитуды колебаний определяется коэф­фициентом затухания: чем сильнее тормозящее действие среды, тем больше Р и тем быстрее уменьшается амплитуда. На практи­ке, однако, степень затухания часто характеризуют логарифми­ческим декрементом затухания, понимая под этим величину, равную натуральному логарифму отношения двух последовательных амплитуд, разделенных интервалом времени, равным пери­оду колебаний При сильном затухании видно, что период колебания является мнимой величиной. Движение в этом случае уже не будет периодическим и называется апериодическим1.

1

1