Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лабораторный практикум....doc
Скачиваний:
264
Добавлен:
12.02.2015
Размер:
3.11 Mб
Скачать

1. Химическая коррозия

Разрушение металла происходит, в большинстве случаев, при повышенной температуре в отсутствие следов влаги, в среде неэлектролита. Например, при работе двигателя внутреннего сгорания в неводных органических средах (бензин, смазочные масла), при термической обработке металла, разрушение арматуры печей и т.д. В результате коррозии на поверхности металла образуется пленка соответствующего соединения: оксида, сульфида, хлорида металла и т.п. Активные металлы s-семейства (Nа, К, Са, Ва ) энергично окисляются на воздухе при комнатной температуре, поэтому их хранят под слоем керосина или масла.

2. Электрохимическая коррозия

Самопроизвольное окисление металлов происходит при невысокой температуре в среде электролита: в водных растворах кислот, щелочей или во влажном воздухе (адсорбированная на поверхности металла вода растворяет кислород, углекислый, сернистый газы и др.).

Коррозию этого типа, в основном, вызывают ионы водорода (присутствующие в значительных количествах в растворах кислот и в очень малых − в воде), способные к восстановлению:

2H+ + 2ê = H2, (6.1)

а также кислород, растворенный в воде

O2 + 2H2O + 4ê = 4OH-; (6.2)

O2 + 2H+ + 4ê = 2H2O. (6.3)

В данных методических указаниях не рассматривается вопрос о том, что является более сильным окислителем: присутствующий в воде кислород или ионы Н+, образующиеся при диссоциации молекул воды.

Электрохимической коррозии в значительной степени подвергаются металлы не химически чистые, а содержащие примеси углерода, других металлов или их соединений. В этом случае процесс сопровождается возникновением в среде электролита микрогальванических пар, в которых анодом становится более активный металл, а катодом − менее активный (или примеси, содержащиеся в металле). Интенсивность коррозии зависит от разности потенциалов контактирующих металлов и возрастает с увеличением последней.

В процессе коррозии различают анодный процесс (окисления металла) и катодный процесс (восстановление). Восстанавливаться могут ионы водорода среды (уравнение (6.1), или кислород, растворенный в воде (уравнение (6.2)).

Примеры электрохимической коррозии

  1. Коррозия железа с включением меди в растворе серной кислоты. Возникает гальванопара, схема которой А(-) Fе /H2SO4/Сu (+)К. Железо как более активный металл (Е0 = - 0,44 В) играет роль анода, а медь (Е0= +0,34В) − катода. Процесс коррозии выражается уравнениями:

0 - 2ê = Fe2+ анодный процесс;

++ 2ê = Н02 катодный процесс.

В результате железо разрушается, превращаясь в соль FеSO4, а на участках включения меди выделяется водород.

2.Коррозия технического железа (с примесями углерода или карбида железа − Fe3C) во влажном воздухе. В возникающих микрогальванопарах роль катода играет углерод или карбид железа :

А(-) Fе /H2O, O2/ Fe3C (+)К.

Процесс коррозии можно представить уравнениями:

на аноде 2Fе 0 - 4ê = 2Fe 2+;

на катоде O2 + 2H2O + 4ê = 4OH-.

Продуктом коррозии является первоначально гидроксид железа (II) − Fе(ОН)2, который под влиянием кислорода воздуха окисляется дальше до гидроксида железа (III):

4Fe(OH)2 + O2 + 2H2O = 4Fe(OH)3.

Качественные реакции на ионы железа

Как отмечалось выше, железо, растворяясь в кислотах, может превращаться в ионы Fе2+ и Fе3+. Наличие в растворе того или иного иона можно обнаружить с помощью цветных качественных реакций.

Ион Fе2+ обнаруживается реакцией с гексацианоферратом (III) калия (красной кровяной солью) − К3[ Fе(СN)6]. В присутствии иона Fе2+ образуется осадок синего цвета:

3FeCl2 + 2К3[ Fе(СN)6] = Fe3[ Fе(СN)6]2¯ + 6KCl

или

3Fe2+ + 2[ Fе(СN)6]3- = Fe3[ Fе(СN)6]2¯

Ион Fe3+ можно обнаружить с помощью двух реагентов:

а) гексацианоферрата (II) калия (желтой кровяной соли) – К4[ Fе(СN)6] − по образованию осадка синего цвета:

4Fe(NO3)3 + 3К4[ Fе(СN)6] = Fe4[ Fе(СN)6]3 ¯ + 12KNO3

синий цвет

или

4Fe3+ + 3[ Fе(СN)6]4- = Fe4[ Fе(СN)6]3 ¯

б) роданида калия − КСNS - по появлению кроваво-красной окраски:

Fe(NO3)3 + 3КСNS = Fe(СNS)3 + 3KNO3

кроваво-красный цвет

Fe3+ + 3СNS- = Fe(СNS)3

ЗАЩИТА МЕТАЛЛОВ ОТ КОРРОЗИИ

Коррозию металлов можно затормозить изменением потен­циала металла, пассивированием металла, снижением концен­трации окислителя, изоляцией поверхности металла от окислите­ля, изменением состава металла и др. Выбор способа опреде­ляется его эффективностью, а также экономической целесооб­разностью. Все методы защиты условно делятся на следующие группы: а) легирование металлов; б) защитные покрытия (ме­таллические, неметаллические); в) электрохимическая защита; г) изменение свойств коррозионной среды; д) рациональное кон­струирование изделий.

Легирование металлов - эффективный (хотя и дорогой) ме­тод повышения коррозионной стойкости металлов. При легирова­нии в состав сплава вводят компоненты, вызывающие пассива­цию металла. В качестве таких компонентов применяют хром, никель, вольфрам и др. К коррозионностойким сплавам, например, относятся нержавеющие стали, в которых легирующим компонентом служат хром, никель, и другие металлы. содержание хром, кремний, молибдена (4-9%) улучшает жаропрочность стали, такие сплавы применяют в парогенераторо- турбостроении. Сплав, содержащий 9-12% хрома, применяет для изготовления турбин, деталей реактивных двигателей и т.п.

Защитные покрытия. Слои, искусственно создаваемые на по­верхности металлических изделий и сооружений для предохра­нения их от коррозии, называются защитными покрытиями. Если наряду с защитой от коррозии покрытие служит также для де­коративных целей, его называют защитно-декоративным. Выбор вида покрытия зависит от условий, в которых используется металл.

а) металлические покрытия. Материалами для металлических защитных покрытий могут быть как чистые металлы (цинк, кадмий, алюминий, ни­кель, медь, хром, серебро и др.), так и их сплавы (бронза, ла­тунь и др. По характеру поведения металлических покрытий при коррозии их можно разделить на катодные и анодные.

Покрытие называется анодным, если защищающий металл имеет более отрицательный потенциал, чем металл детали. Примером могут служить оцинкованное железо, хромированное железо и др. Если на каком-либо участке покрытие будет нарушено, то разрушаться начнет покрытие (роль анода), а железо сохранится, так как он будет пассивным (катодным) участком.

Например, коррозия хромированного железа в кислой среде протекает следующим образом :

А(-) Cr /H2SO4/Fe (+)К;

на аноде Cr0 - 3ê = Cr3+;

на катоде 2Н++ 2ê = Н02.

К катодным покрытиям относятся покрытия, потенциалы кото­рых в данной среде имеют более положительное значение, чем потенциал основного металла. В случае катодного покрытия (металлическое покрытие пассивнее основной детали) появление в покрытии трещин, пор или других повреждений повлечет коррозию самого изделия, т.к. катодное покрытие защищает металл механически, изолируя его от воздействия среды. Примерами катодного покрытия являются никелированное, луженое (покрытие оловом) железо.

Коррозия никелированного железа во влажном воздухе может быть выражена уравнениями:

А(-) Fе /H2O, O2/ Ni (+);

на аноде Fе 0 - 2ê = Fe2+;

на катоде O2 + 2H2O + 4ê = 4OH-.

Д

а

ля получения металлических защитных покрытий применя­ются различные способы:

- электрохимический (гальванические покрытия), погружение в расплавленный металл, металлиза­ция, термодиффузионный и химический. Из рас­плава получают покрытие цинка (горячее цинкование) и олова (горячее лужение).

- химический способ получения металлических покрытий заключается в восстановлении соединений металла с помощью водорода, гидразина и других восстановителей.

в) органические покрытия: к ним относятся лакокрасочные покрытия, покры­тия смолами, пластмассами, полимерными пленками, резиной. Лакокрасочные покрытия наиболее распространены и неза­менимы. Лакокрасочное покрытие должно быть сплошным, бес­пористым, газо- и водонепроницаемым, химически стойким, эла­стичным, обладать высоким сцеплением с материалом, механи­ческой прочностью и твердостью.

г

)В качестве неорганических покрытий применяют неоргани­ческие эмали,оксиды металлов, соединения хрома, фосфора и др.

Образование на поверхности металличе­ских изделий защитных оксидных пленок в технике называют оксидированием. Так, например, процессы нанесения на сталь оксидных пленок иногда называют воронением, а электрохимическое ок­сидирование алюминия — анодированием.

Фосфатные покрытия на стали получают из растворов ортофосфорной кислоты и ортофосфатов марганца или цинка (на­пример, ZnHPO4 + H3PO4). При реакции образуется пористый кристаллический фосфат металла, хорошо сцепленный с поверх­ностью стали. Сами по себе фосфатные покрытия не обеспечивают достаточной защиты от коррозии. Их используют в основ­ном в качестве подложки под краску, что повышает сцепле­ние лакокрасочного покрытия со сталью и уменьшает коррозию в местах царапин.

Электрохимическая защита (протекторная) осуществляется присоедине­нием к защищаемой конструкции металла с более отрицательным значением электродного потенциала. Такие металлы называются протекторами. Вспомогательный электрод (анод) растворяется, на защи­щаемом сооружении (катоде) выделяется водород. Для их изготовления большей частью используют магний и его сплавы, цинк, алюминий.

Наиболее применима электрохимическая защита в корро­зионных средах с хорошей ионной электрической проводи­мостью. Сущность катодной защиты заключается в том, что защи­щаемое изделие подключается к отрицательному полюсу внеш­него источника постоянного тока, поэтому оно становится като­дом, а анодом служит вспомогательный, обычно стальной элек­трод. Катодная поляризация используется для защиты от кор­розии подземных трубопроводов, кабелей. Катодную защиту применяют также к шлюзовым воротам, подводным лодкам, вод­ным резервуарам, морским трубопроводам и оборудованию хи­мических заводов.

Изменение свойств коррозионной среды. Для снижения аг­рессивности среды уменьшают концентрацию компонентов, опас­ных в коррозионном отношении. Например, в нейтральных сре­дах коррозия обычно протекает с поглощением кислорода. Его удаляют деаэрацией (кипячение, барботаж инертного газа) или восстанавливают с помощью соответствующих восстановителей (сульфиты, гидразин и т. п.). Агрессивность среды может умень­шаться также при снижении концентрации ионов Н+, т. е. по­вышении рН (подщелачивании). Для защиты от коррозии широко применяют ингибиторы.

Ингибитором называется вещество, при добавлении ко­торого в среду, где находится металл, значительно уменьшается скорость коррозии металла. К анодным замедлителям нужно отнести замедлители окисляю­щего действия, например нитрит натрия NaNО2, дихромат натрия Na2Cr2O7. К катодным ингибиторам относятся органические вещества, содержащие азот, серу и кислород, на­пример диэтиламин, уротропин, формальдегид, тиокрезол.

Защита от коррозии блуждающими токами. Токи, ответвляю­щиеся от своего основного пути, называются блуждающими. Источниками блуждающих токов могут быть различные системы и устройства, работающие на постоянном токе, например желез­нодорожные пути электропоездов, заземления постоянного тока, установки для электросварки, электролизные ванны, системы катодной защиты и т. д.

Коррозия металлов под влиянием электрического тока от внешнего источника называется электрокоррозией. В качестве примера рассмотрим электрокоррозию подземного трубопровода во влажной почве. Схема возникновения блуждающего тока от трамвайной линии, где стальные рельсы используются для воз­вращения тока к генераторной станции. Борьба с коррозией блуждающими токами заключается, пре­жде всего, в их уменьшении. Для электрифицированных желез­ных дорог, у которых рельсы служат обратными проводами, это достигается поддержанием в хорошем состоянии электрических контактов между рельсами и увеличением сопротивления между рельсами и почвой.