Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Неорганическая Химия.docx
Скачиваний:
49
Добавлен:
11.02.2015
Размер:
172.26 Кб
Скачать

Неорганическая химия.

1 ВОПРОС

Основные понятия и законы химии. Эквивалент

Химия - наука о веществах, закономерностях их превращений (физических и химических свойствах) и применении. Химические явления: одни вещества превращаются в другие, отличающиеся от исходных составом и свойствами, при этом состав ядер атомов не изменяется. Физические явления: меняется физическое состояние веществ (парообразование, плавление, электропроводность, выделение тепла и света, ковкость и др.) или образуются новые вещества с изменением состава ядер атомов.

1. Все вещества состоят из молекул. Молекула - наименьшая частица вещества, обладающая его химическими свойствами.

2. Молекулы состоят из атомов. Атом - наименьшая частица химического элемента, сохраняющая все его химические свойства. Различным элементам соответствуют различные атомы.

3. Молекулы и атомы находятся в непрерывном движении; между ними существуют силы притяжения и отталкивания.

Химический элемент - это вид атомов, характеризующийся определенными зарядами ядер и строением электронных оболочек. Атомы существуют в свободном состоянии, в соединениях с атомами того же или других элементов, образуя молекулы. Способность атомов вступать во взаимодействие с другими атомами и образовывать химические соединения определяется его строением. Атомы состоят из положительно заряженного ядра и отрицательно заряженных электронов, движущихся вокруг него, образуя электронейтральную систему

Атомное ядро - центральная часть атома, состоящая из протонов(Z) и нейтронов(N), в которой сосредоточена основная масса атомов.

Заряд ядра - положительный, по величине равен количеству протонов в ядре или электронов в нейтральном атоме и совпадает с порядковым номером элемента в периодической системе. Сумма протонов и нейтронов атомного ядра называется массовым числом A = Z + N.

Изотопы - химические элементы с одинаковыми зарядами ядер, но различными массовыми числами за счет разного числа нейтронов в ядре.

Химическая формула - это условная запись состава вещества с помощью химических знаков и индексов . Химическая формула показывает, атомы каких элементов и в каком отношении соединены между собой в молекуле.

Простые вещества- молекулы, состоят из атомов одного и того же элемента.

Cложные вещества - молекулы, состоят из атомов различных химических элементов.

Относительная атомная масса (Ar) - безразмерная величина, равная отношению средней массы атома элемента (с учетом процентного содержания изотопов в природе) к 1/12 массы атома 12C. Относительная молекулярная масса (Mr) - безразмерная величина, показывающая, во сколько раз масса молекулы данного вещества больше 1/12 массы атома углерода 12C. Относительная молекулярная масса вещества равна сумме относительных атомных масс всех элементов с учетом индексов.

Количество вещества, моль. Означает определенное число структурных элементов (молекул, атомов, ионов). Обозначается n, измеряется в моль. Моль - количество вещества, содержащее столько же частиц, сколько содержится атомов в 12 г углерода.

Молярная масса вещества — масса одного моля вещества. Для отдельных химических элементов молярной массой является масса одного моля отдельных атомов этого элемента. В этом случае молярная масса элемента, выраженная в г/моль, численно совпадает с массой атома элемента, выраженной в а.е.м. (атомная единица массы). Однако надо чётко представлять разницу между молярной массой и молекулярной массой, понимая, что они равны лишь численно и отличаются по размерности. Молярные массы сложных молекул можно определить, суммируя молярные массы входящих в них элементов.

Число Авогадро (NA). Количество частиц в 1 моль любого вещества одно и то же и равно 6,02 • 1023. (Постоянная Авогадро имеет размерность - моль-1).

Молярный объём — объём одного моль вещества, величина, получающаяся от деления молярной массы на плотность. Характеризует плотность упаковки молекул. Значение NA = 6,022…×1023 называется числом Авогадро в честь итальянского химика Амедео Авогадро. Это универсальная постоянная для мельчайших частиц любого вещества. Именно такое количество молекул содержит 1 моль кислорода О2, такое же количество атомов в 1 моль железа (Fe), молекул в 1 моль воды H2O и т. д.Согласно закону Авогадро, 1 моль идеального газа при нормальных условиях имеет один и тот же объём Vm = 22,4 л/моль. При нормальных условиях большинство газов близки к идеальным, поэтому вся справочная информация о молярном объёме химических элементов относится к их конденсированным фазам, если не оговорено обратное.Из закона Авогадро вытекает еще одно важное следствие: отношение масс одинаковых объемов двух газов есть величина постоянная для данных газов. Эта постоянная величина называется относительной плотностью газа и обозначается D. Так как молярные объемы всех газов одинаковы (следствие закона Авогадро), то отношение молярных масс любой пары газов также равна этой постоянной: D = М1/М2 где М1 и М2 – молярные массы двух газообразных веществ. Величина D определяется экспериментально как отношение масс одинаковых объемов исследуемого газа М1 и эталонного газа с известной молекулярной массой М2. По величинам D и М2 можно найти молярную массу исследуемого газа.

Эквивалент – это реальная или условная частица, которая в кислотно-основных реакциях присоединяет (или отдает) один ион Н+ или ОН–, в окислительно-восстановительных реакциях принимает (или отдает) один электрон, реагирует с одним атомом водорода или с одним эквивалентом другого вещества. Число, показывающее, какая часть молекулы или другой частицы вещества соответствует эквиваленту, называется фактором эквивалентности (fЭ). Фактор эквивалентности – это безразмерная величина, которая меньше, либо равна 1. Формулы расчета фактора эквивалентности приведены в таблице 1.1. Таким образом, сочетая фактор эквивалентности и формульную единицу вещества, можно составить формулу эквивалента какой-либо частицы, где фактор эквивалентности записывается как химический коэффициент перед формулой частицы: fЭ (формульная единица вещества) º эквивалент Следует учитывать, что эквивалент одного и того же вещества может меняться в зависимости от того, в какую реакцию оно вступает. Эквивалент элемента также может быть различным в зависимости от вида соединения, в состав которого он входит. Эквивалентом может являться как сама молекула или какая-либо другая формульная единица вещества, так и ее часть. Таблица 1.1 – Расчет фактора эквивалентности :

Элемент где В(Э) – валентность элемента

Простое вещество , где n(Э) – число атомов элемента (индекс в химической формуле), В(Э) – валентность элемента

Оксид , где n(Э) – число атомов элемента (индекс в химической формуле оксида), В(Э) – валентность элемента

Кислота , где n(H+) – число отданных в ходе реакции ионов водорода (основность кислоты)

Основание ,где n(ОH–) – число отданных в ходе реакции гидроксид-ионов (кислотность основания)

Соль , где n(Ме) – число атомов металла (индекс в химической формуле соли), В(Ме) – валентность металла; n(А) – число кислотных остатков, В(А) – валентность кислотного остатка

Частица в окислительно-восстано­вительных реакциях , гдеn(e) – число электронов, участвующих в процессе окисления или восстановления

Ион , где z – заряд иона

Эквивалент, как частица, может быть охарактеризован молярной массой (молярным объемом) и определенным количеством вещества nэ. Молярная масса эквивалента (МЭ) – это масса одного моль эквивалента. Она равна произведению молярной массы вещества на фактор эквивалентности: МЭ = М×fЭ. Молярная масса эквивалента имеет размерность «г/моль». Молярная масса эквивалента сложного вещества равна сумме молярных масс эквивалентов образующих его составных частей, например:

МЭ(оксида) = МЭ(элемента) + МЭ(О) = МЭ(элемента) + 8

МЭ(кислоты) = МЭ(Н) + МЭ(кислотного остатка) = 1 + МЭ(кислотного остатка)

МЭ(основания) = МЭ(Ме) + МЭ(ОН) = МЭ(Ме) + 17

МЭ(соли) = МЭ(Ме) + МЭ(кислотного остатка).

Основные стехиометрические законы

Закон сохранения массы веществ

Масса всех веществ, вступивших в химическую реакцию, равна массе всех продуктов реакции. Атомно-молекулярное учение этот закон объясняет следующим образом: в результате химических реакций атомы не исчезают и не возникают, а происходит их перегруппировка (т.е. химическое превращение- это процесс разрыва одних связей между атомами и образование других, в результате чего из молекул исходных веществ получаются молекулы продуктов реакции). Поскольку число атомов до и после реакции остается неизменным, то их общая масса также изменяться не должна. Под массой понимали величину, характеризующую количество материи. Исходя из закона сохранения массы, можно составлять уравнения химических реакций и по ним производить расчеты. Он является основой количественного химического анализа.

Закон постоянства состава

любое определенное химически чистое соединение независимо от способа его получения состоит из одних и тех же химических элементов, причем отношения их масс постоянны, а относительные числа их атомов выражаются целыми числами. Это один из основных законов химии.

Закон кратных отношений

Если два химических элемента дают несколько соединений, то весовые доли одного и того же элемента в этих соединениях, приходящиеся на одну и ту же весовую долю второго элемента, относятся между собой как небольшие целые числа.

Закон эквивалентных отношений

Гомогенная и гетерогенная реакции. Факторы, влияющие на химическое равновесие. Применение принципа Ле-Шателье на примере обратимой химической реакции. Молярная концентрация эквивалента, ее определение. Математическое выражение второго закона Рауля

Газовые законы

Закон Авогадро

одно из важных основных положений химии, гласящее, что «в равных объёмах различных газов, взятых при одинаковых температуре и давлении, содержится одно и то же число молекул».

Первое следствие из закона Авогадро: один моль любого газа при одинаковых условиях занимает одинаковый объём. В частности, при нормальных условиях( 0 °C (273К) и 101,3 кПа) объём 1 моля газа, равен 22,4 л. Этот объём называют молярным объёмом газа Vm.

Второе следствие из закона Авогадро: молярная масса первого газа равна произведению молярной массы второго газа на относительную плотность первого газа по второму.

Закон Бойля —Мариотта — один из основных газовых законов, открытый в 1662 году Робертом Бойлем и независимо переоткрытый Эдмом Мариоттом в 1676 году. Описывает поведение газа в изотермическом процессе. Утверждение закона Бойля — Мариотта состоит в следующем: При постоянных температуре и массе газа произведение давления газа на его объём постоянно. В математической форме это утверждение записывается в виде формулы: pV=C, где p — давление газа; V— объём газа, а C — постоянная в оговоренных условиях величина. В общем случае значение определяется химической природой, массой и температурой газа. Очевидно, что если индексом 1 обозначить величины, относящиеся к начальному состоянию газа, а индексом 2 — к конечному, то приведённую формулу можно записать в виде: . Из сказанного и приведённых формул следует вид зависимости давления газа от его объёма в изотермическом процессе: p=. Эта зависимость представляет собой другое, эквивалентное первому, выражение содержания закона Бойля — Мариотта. Она означает, что: Давление некоторой массы газа, находящегося при постоянной температуре, обратно пропорционально его объёму. Тогда связь начального и конечного состояний газа, участвовавшего в изотермическом процессе, можно выразить в виде:. Следует отметить, что применимость этой и приведённой выше формулы, связывающей начальные и конечные давления и объёмы газа друг с другом, не ограничивается случаем изотермических процессов. Формулы остаются справедливыми и в тех случаях, когда в ходе процесса температура изменяется, но в результате процесса конечная температура оказывается равной начальной. Важно уточнить, что данный закон справедлив только в тех случаях, когда рассматриваемый газ можно считать идеальным. В частности, с высокой точностью закон Бойля — Мариотта выполняется применительно к разреженным газам. Если же газ сильно сжат, то наблюдаются существенные отступления от этого закона.

Закон Гей-Люссака

Изобарический закон, открытый Гей-Люссаком в 1802 году утверждает, что при постоянном давлении, объём постоянной массы газа пропорционален абсолютной температуре. Математически закон выражается следующим образом:или, где V — объём газа, T — температура. Если известно состояние газа при неизменном давлении и двух разных температурах, закон может быть записан в следующей форме: или V1T2=V2T1.

Объединенный газовый закон

Объединяя законы Бойля - Мариотта и Гей-Люссака , можно получить следующее уравнение: , которое является математическим выражением объединенного газового закона, или закона состояния газов. Он позволяет вычислить, например, объем газа при определенных температуре и давлении, если известен его объем при других значениях температуры и давления. Объединенный газовый закон можно также записать в другой форме:. Точное значение постоянной в правой части этого уравнения зависит от количества газа. Если количество газа равно одному молю, то соответствующая постоянная обозначается буквой R и называется молярная газовая постоянная, или просто газовая постоянная. Если давление выражено в атмосферах, постоянная R имеет значение R = 8,314 Дж*К* моль-1. Объединенный газовый закон для одного моля газа приобретает вид:, где Vm- объем одного моля газа. Для п молей газа получается уравнение: или . В такой форме объединенный газовый закон называется уравнением состояния идеального газа. Уравнение состояния это уравнение, связывающее между собой параметры состояния газа-давление, объем и температуру. Газ, который полностью подчиняется уравнению состояния идеального газа, называется идеальный газ. Такой газ не существует в действительности. Реальные газы хорошо подчиняются уравнению состояния идеального газа при низких давлениях и высоких температурах.

Уравнение Клапейрона-Менделеева.

Связь между числом молей газа, его температурой, объемом и давлением. Газы нередко бывают реагентами и продуктами в химических реакциях. Не всегда удается заставить их реагировать между собой при нормальных условиях. Поэтому нужно научиться определять число молей газов в условиях, отличных от нормальных. Для этого используют уравнение состояния идеального газа (его также называют уравнением Клапейрона-Менделеева): PV = nRT, где n – число молей газа; P – давление газа (например, в атм; V – объем газа (в литрах); T – температура газа (в кельвинах); R – газовая постоянная (0,0821 л·атм/моль·K).

__________________________________________________________________________________________________________________________________________________________________________________________

2 ВОПРОС

Строение атома

Атом - частица вещества микроскопических размеров и массы, наименьшая часть химического элемента, являющаяся носителем его свойств. Атом состоит из атомного ядра и электронов. Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. В противном случае он обладает некоторым положительным или отрицательным зарядом и называется ионом. В некоторых случаях под атомами понимают только электронейтральные системы, в которых заряд ядра равен суммарному заряду электронов, тем самым противопоставляя их электрически заряженным ионам. Ядро, несущее почти всю (более чем 99,9 %) массу атома, состоит из положительно заряженных протонов и незаряженных нейтронов, связанных между собой при помощи сильного взаимодействия. Атомы классифицируются по количеству протонов и нейтронов в ядре: число протонов Z соответствует порядковому номеру атома в периодической системе Менделеева и определяет его принадлежность к некоторому химическому элементу, а число нейтронов N — определённому изотопу этого элемента. Число Z также определяет суммарный положительный электрический заряд (Ze) атомного ядра и число электронов в нейтральном атоме, задающее его размер. Атомы различного вида в разных количествах, связанные межатомными связями, образуют молекулы.

Квантовые числа - это энергетические параметры, определяющие состояние электрона и тип атомной орбитали, на которой он находится. Квантовые числа необходимы для описания состояния каждого электрона в атоме. Всего 4-ре квантовых числа. Это: главное квантовое число - n, орбитальное квантовое число - l, магнитное квантовое число - ml и спиновое квантовое число - ms.

Главное квантовое число - n. Главное квантовое число - n - определяет энергетический уровень электрона, удалённость энергетического уровня от ядра и размер электронного облака. Главное квантовое число принимает любые целочисленные значения, начиная с n=1 (n=1,2,3,…) и соответствует номеру периода.

Орбитальное квантовое число - l. Орбитальное квантовое число - l - определяет геометрическую форму атомной орбитали. Орбитальное квантовое число принимает любые целочисленные значения, начиная с l=0 (l=0,1,2,3,…n-1). Независимо от номера энергетического уровня, каждому значению орбитального квантового числа соответствует орбиталь особой формы. “Набор” таких орбиталей с одинаковыми значениями главного квантового числа называется энергетическим уровнем. Каждому значению орбитального квантового числа соответствует орбиталь особой формы. Значению орбитального квантового числа l=0 соответствует s-орбиталь (1-ин тип). Значению орбитального квантового числа l=1 соответствуют p-орбитали (3-ри типа). Значению орбитального квантового числа l=2 соответствуют d-орбитали (5-ть типов). Значению орбитального квантового числа l=3 соответствуют f-орбитали (7-мь типов).

Значение орбитального квантового числа - l. Типы орбитали. Количество типов орбитали.

l=0 s-орбиталь 1

l=1 p-орбитали 3

l=2 d-орбитали 5

l=3 f-орбитали 7

f-орбитали имеют ещё более сложную форму. Каждый тип орбитали - это объём пространства, в котором вероятность нахождения электрона - максимальна.

Магнитное квантовое число - ml. Магнитное квантовое число - ml - определяет ориентацию орбитали в пространстве относительно внешнего магнитного или электрического поля. Магнитное квантовое число принимает любые целочисленные значения от -l до +l, включая 0. Это означает, что для каждой формы орбитали существует 2l+1 энергетически равноценных ориентаций в пространстве - орбиталей.

Для s-орбитали: l=0, m=0 - одна равноценная ориентация в пространстве (одна орбиталь).

Для p-орбитали: l=1, m=-1,0,+1 - три равноценные ориентации в пространстве (три орбитали).

Для d-орбитали: l=2, m=-2,-1,0,1,2 - пять равноценных ориентаций в пространстве (пять орбиталей).

Для f-орбитали: l=3, m=-3,-2,-1,0,1,2,3 - семь равноценных ориентаций в пространстве (семь орбиталей).

Спиновое квантовое число - ms. Спиновое квантовое число - ms - определяет магнитный момент, возникающий при вращении электрона вокруг своей оси. Спиновое квантовое число может принимать лишь два возможных значения +1/2 и -1/2. Они соответствуют двум возможным и противоположным друг другу направлениям собственного магнитного момента электрона - спинам. Для обозначения электронов с различными спинами используются символы: 5 и 6.

Свойства атома

По определению, любые два атома с одним и тем же числом протонов в их ядрах относятся к одному химическому элементу. Атомы с одним и тем же количеством протонов, но разным количеством нейтронов называют изотопами данного элемента.

Масса

Атомная масса. Поскольку наибольший вклад в массу атома вносят протоны и нейтроны, суммарное число этих частиц называют массовым числом. Массу покоя атома часто выражают в атомных единицах массы (а. е. м.). Так как массы даже самых тяжёлых атомов в обычных единицах (например, в граммах) очень малы, то в химии для измерения этих масс используют моли. В одном моле любого вещества по определению содержится одно и то же число атомов. Это число (число Авогадро) выбрано таким образом, что если масса элемента равна 1 а. е. м., то моль атомов этого элемента будет иметь массу 1 г. Например, углерод имеет массу 12 а. е. м., поэтому 1 моль углерода весит 12 г.

Размер

Радиус атома. Атомы не имеют отчётливо выраженной внешней границы, поэтому их размеры определяются по расстоянию между ядрами соседних атомов, которые образовали химическую связь (Ковалентный радиус) или по расстоянию до самой дальней из стабильных орбит электронов в электронной оболочке этого атома (Радиус атома). Радиус зависит от положения атома в периодической системе, вида химической связи, числа ближайших атомов (координационного числа) и квантово-механического свойства, известного как спин. В периодической системе элементов размер атома увеличивается при движении сверху вниз по столбцу и уменьшается при движении по строке слева направо. Соответственно, самый маленький атом — это атом гелия, а самый большой — атом цезия.

Энергетические уровни

Когда электрон находится в связанном состоянии в атоме, он обладает потенциальной энергией, которая обратно пропорциональна его расстоянию от ядра. Эта энергия обычно измеряется в электронвольтах (эВ) и равна энергии, которую надо передать электрону, чтобы сделать его свободным (оторвать от атома). Согласно квантовомеханической модели атома связанный электрон может занимать только дискретный набор разрешённых энергетических уровней — состояний с определённой энергией

Для перехода электрона с одного энергетического уровня на другой нужно передать ему или отнять у него энергию. Это происходит путём соответственно поглощения или испускания фотона, причём энергия этого фотона равна абсолютной величине разности энергий начального и конечного уровней электрона. Энергия испущенного фотона пропорциональна его частоте, поэтому переходы между разными энергетическими уровнями проявляются в различных областях электромагнитного спектра. Каждый элемент имеет уникальный спектр испускания, который зависит от заряда ядра, заполнения электронных подоболочек, взаимодействия электронов, а также других факторов.

Валентность

Внешняя электронная оболочка атома, если она не полностью заполнена, называется валентной оболочкой, а электроны этой оболочки называются валентными электронами. Число валентных электронов определяет то, как атом связывается с другими атомами посредством химической связи. Путём образования химических связей атомы стремятся заполнить свои внешние валентные оболочки.

Чтобы показать повторяющиеся химические свойства химических элементов, их упорядочивают в виде периодической таблицы. Элементы с одинаковым числом валентных электронов формируют группу, которая изображается в таблице в виде столбца (движение по горизонтальному ряду соответствуют заполнению валентной оболочки электронами). Элементы, находящиеся в самом правом столбце таблицы, имеют полностью заполненную электронами внешнюю оболочку, поэтому они отличаются крайне низкой химической активностью и называются инертными или благородными газами.

Энергией сродства атома к электрону, или просто его сродством к электрону (ε), называют энергию, выделяющуюся в процессе присоединения электрона к свободному атому Э в его основном состоянии с превращением его в отрицательный ион Э− (сродство атома к электрону численно равно, но противоположно по знаку энергии ионизации соответствующего изолированного однозарядного аниона). Э + e− = Э− + ε Сродство к электрону выражают в килоджоулях на моль (кДж/моль) или в электронвольтах на атом (эВ/атом).

Энтальпия, также тепловая функция и теплосодержание — термодинамический потенциал, характеризующий состояние системы в термодинамическом равновесии при выборе в качестве независимых переменных давления, энтропии и числа частиц. Проще говоря, энтальпия — это та энергия, которая доступна для преобразования в теплоту при определенном постоянном давлении.

Таким образом, энтальпия в данном состоянии представляет собой сумму внутренней энергии тела и работы, которую необходимо затратить, чтобы тело объёмом V ввести в окружающую среду, имеющую давление р и находящуюся с телом в равновесном состоянии. Энтальпия системы H — аналогично внутренней энергии и другим термодинамическим потенциалам — имеет вполне определенное значение для каждого состояния, т. е. является функцией состояния. Следовательно, в процессе изменения состояния Изменение энтальпии (или Тепловой эффект химической реакции) не зависит от пути процесса, определяясь только начальным и конечным состоянием системы. Если система каким-либо путём возвращается в исходное состояние (круговой процесс), то изменение любого её параметра, являющегося функцией состояния, равно нулю, отсюда. Все химические реакции сопровождаются выделением (экзотермические) или поглощением (эндотермические) тепла. Мерой теплоты реакции служит изменение энтальпии ΔН, которая соответствует теплообмену при постоянном давлении. В случае экзотермических реакций система теряет тепло и ΔН — величина отрицательная. В случае эндотермических реакций система поглощает тепло и ΔН — величина положительная.

Первый закон термохимии (Лавуазье и Лаплас, 1780—1784): тепловой эффект образования данного соединения в точности равен, но обратен по знаку тепловому эффекту его разложения. Из закона Лавуазье—Лапласа следует невозможность построить вечный двигатель I рода, использующий энергию химических реакций.

Второй закон термохимии (Г. И. Гесс, 1840): тепловой эффект химической реакции не зависит от характера и последовательности отдельных ее стадий и определяется только начальными и конечными продуктами реакции и их физическим состоянием (при p=const или при v=const). Г. И. Гесс первый принял во внимание физическое состояние реагирующих веществ, так как теплоты изменения агрегатных состояний веществ накладываются на тепловой эффект реакции, увеличивая или уменьшая его. Утверждение закона Гесса о том, что тепловой эффект процесса не зависит от его отдельных стадий и их последовательности, дает возможность рассчитывать тепловые эффекты реакций для случаев, когда их определить экспериментально или очень трудно, или вообще невозможно. Применение закона Гесса чрезвычайно расширило возможности термохимии, позволяя производить точные расчеты тепловых эффектов образования целого ряда веществ, опытные данные по которым получить было трудно. Закон Гесса в наши дни применяют главным образом для расчета термодинамических функций—энтальпий, которые сейчас используются для термохимических расчетов. Термохимия, исторически сложившаяся раньше термодинамики, в настоящее время претерпела некоторые изменения и стала разделом химической термодинамики.

__________________________________________________________________________________________________________________________________________________________________________________________

3 Вопрос

Химическая связь - это совокупность сил обуславливающих связь между атомами химических соединений.Причиной образования хим . соединений является стремление каждого атома завершить свой ВЭУ т.е. приобрести устойчивую дуплетную(2е) или октетную(8е) конфигурацию.

1)Ковалентная связь- это связь между 2 атомами образованными общими электронными парами. Существует 2 способа образования ковалентной связи:

А)обменный механизм- оба атома дают по одному неспареному электрону для образования общей пары.

Б)донорно-акцепторный механизм-один из атомов(донор) предоставляет неподеленную электронную пару, а другой атом(акцептор) принимает эту пару.

Различают полярную и неполярную ковалентную связь:

А)неполярная ковал. Связь образуется между атома ми одного элемента неметалла H2,N2,Cl2.

Б)полярная ковал. Связь образована при помощи разных элементов неметаллов . Электроотрицательность- это способность атома притягивать к себе общие электроны химической связи.Чем больше разница в ЭО атомов тем более полярна ковалентная связь.

Свойства ковалентной связи:1)высокая прочность2)насыщаемость, обусловлена способностью атомов образовывать лишь определенное число ковалентных связей равное валентности3)направляемость, обусловлена гибридизацией.

2)Ионная связь- это связь между противоположно заряженными ионами за счет их электростатического притяжения ,ионная связь образуется между металлом и неметаллом с высокой ЭО.

Свойства ионных соединений:1)чрезвычайно прочны в кристаллическом состоянии2)имеют высокие Т плавления и кипения3)легко диссоциируют в водных растворах.

3)Металическая связь-это химическая связь в металлах между ионами металлов в узлах кристаллической решетки и относительно свободными валентными электронами.

Свойства металлической связи:1)металлический блеск2)пластичность3)теплопроводность4)электропроводность.

4)водородная связь- это слабая химическая связь между атомами H и элементов с высокой ЭО.

__________________________________________________________________________________________________________________________________________________________________________________________

__________________________________________________________________________________________________________________________________________________________________________________________

4 Вопрос

Энергетика химических реакций.

Внутренняя энергия- функция состояния системы являющаяся совокупностью всех видов энергии и составляющих ее частиц. Она складывается из кинетической энергии движения частиц и потенциальной энергии их взаимодействия.

Первое начало термодинамики (зк. Сохранения энергии) : энергия не возникает из ничего и не исчезает, а только переходит из одного вида в другой.

Следствия из первого начала:1-полная энергия изолированной системы является неизменной при любых протекающих в ней процессах.2-теплота сообщаемая системой расходуется на изменение ее внутренней энергии и на совершение ею работы против внешних сил.Q=/_\U+A/

Энтальпия-это функция состояния системы равная внутренней энергии+ работа расширения.

Законы термохимии:

1.Закон лавуазье-лапласа:тепло, необходимое для разложения химического соединения = теплоте его образования.

2.Закон Гесса: тепловой эффект химической реакции протекающей при постоянных давлении и объеме, не зависит от пути реакции, а определяется лишь начальным и конечным состоянием системы.

1-е следствие из закона Гесса- тепловой эффект образования 1 моль соедиения из данных исходных соединений при заданных температуре и давлении не зависит от способа его получения.

2-е следствие- изменение энтальпии(тепловой эффект химической реакции)= сумме энтальпий образования продуктов- сумма энтальпий образования исходных веществ.

3-е следствие- Q реакции=сумме теплот сгорания исходных веществ- сумма теплот сгорания продуктов реакции.

Энтропия- функция состояния введенная для оценки беспорядка в системе.

1)энтропия принимает только положительные значения, не равные нулю

2)энтропия сложной системы=сумме энтропий

3) чем больше беспорядок в системе тем большее значение S ему соответствует.

4)Sтв<Sж<Sгз

5)все процессы, приводящие к увеличению числа частиц и их подвижности, сопровождаются увеличением энтропии.

Второе начало термодинамики: в изолированной системе самопроизвольные процессы могут протекать в направлении увеличения энтропии.

Третье начало термодинамики: Приращение энтропии при абсолютном нуле температуры стремится к конечному пределу, не зависящему от того, в каком равновесном состоянии находится система.

Условия протекания самопроизвольного процесса:1)Н<0,S>0. G<0 при любой температуре2)Н<0,S<0.G<0 при низких температурах3)H>0,S>0. G<0 при высоких температурах.

__________________________________________________________________________________________________________________________________________________________________________________________

5 Вопрос

Кинетика химических реакций. химическая кинетика или кинетика химических реакций — раздел физической химии, изучающий закономерности протекания химических реакций во времени, зависимости этих закономерностей от внешних условий, а также механизмы химических превращений.

1)В 1865 году Н. Н. Бекетовым и в 1867 году К. М. Гульдбергом и П. Вааге был сформулирован закон действующих масс, согласно которому скорость химической реакции в каждый момент времени пропорциональна концентрациям реагентов, возведённым в некоторые степени. Кроме концентрации на скорость химической реакции оказывают влияние следующие факторы: природа реагирующих веществ, наличие катализатора, температура (правило Вант-Гоффа) и площадь поверхности раздела фаз.

2) Кроме концентрации на скорость химической реакции оказывают влияние следующие факторы: природа реагирующих веществ, наличие катализатора, температура (правило Вант-Гоффа) и площадь поверхности раздела фаз.

__________________________________________________________________________________________________________________________________________________________________________________________

6 Вопрос

Химическое равновесие.

Химическое равновесие — состояние химической системы, в которой протекает одна или несколько химических реакций, причём скорости в каждой паре прямая-обратная реакция равны между собой. Для системы, находящейся в химическом равновесии, концентрации реагентов, температура и другие параметры системы не изменяются со временем.1)

2) Факторы, влияющие на химическое равновесие:

1) температура

При увеличении температуры химическое равновесие смещается в сторону эндотермической (поглощение) реакции, а при понижении - в сторону экзотермической (выделение) реакции.

CaCO3=CaO+CO2 -Q t↑ →, t↓ ←

N2+3H2↔2NH3 +Q t↑ ←, t↓ →

2) давление

При увеличении давления химическое равновесие смещается в сторону меньшего объёма веществ, а при понижении - в сторону большего объёма. Этот принцип действует только на газы, т.е. если в реакции участвуют твердые вещества, то они в расчет не берутся.

CaCO3=CaO+CO2 P↑ ←, P↓ →

1моль=1моль+1моль

3) концентрация исходных веществ и продуктов реакции

При увеличении концентрации одного из исходных веществ химическое равновесие смещается в сторону продуктов реакции, а при повышении концентрации продуктов реакции - в сторону исходных веществ.

S2+2O2=2SO2 [S],[O]↑ →, [SO2]↑ ←

Катализаторы не влияют на смещение химического равновесия.

Принцип Ле Шателье — Брауна (1884 г.) — если на систему, находящуюся в устойчивом равновесии, воздействовать извне, изменяя какое-либо из условий равновесия (температура, давление, концентрация, внешнее электромагнитное поле), то в системе усиливаются процессы, направленные на компенсацию внешнего воздействия.

Анри Ле Шателье (Франция) сформулировал этот термодинамический принцип подвижного равновесия, позже обобщённый Карлом Брауном.

Принцип применим к равновесию любой природы: механическому, тепловому, химическому, электрическому.