Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
гуморальный врожденный иммунитет.doc
Скачиваний:
42
Добавлен:
11.02.2015
Размер:
101.38 Кб
Скачать
  • II тип включает ифНγ, ранее назвали «иммунный интерферон»;

  • III тип ИФНλ (3 его представителя ИФНλ1, ИФНλ2, ИФНλ3.

Для интеферонов характерно следующее:

1- универсальность действия, т.е. активность в отношении различных вирусов;

2- видовая специфичность – для лечения человека можно использовать только ИФН человеческого происхождения;

3- наличие эффекта последействия; клетки сохра-няют способность подавлять размножение вирусов даже после удаления интерферона: воздействие на рецепторы клеток - активация внеклеточных процессов;

4- отсутствие токсического эффекта;

5- высокая эффективность действия – действуют в малых дозах (достаточно для противовирусного действия несколько десятков молекул).

Интерфероны I типа

Основные клетки-продуценты ИФН I:

1- плазмоцитоидные дендритные клетки или естественные интерферонпродуцирующие клетки

2- моноциты / макрофаги

3- эпителиальные клетки продуценты

4- фибробласты ИФНβ, ИФНα

5- все вирусинфицированные ядросодержащие клетки.

Основные индукторы интерферонов I типа:

1- двуспиральная и односпиральная РНК вирусов, действующие соответственно через TLR-3 и TLR-7/ TLR-8;

2- бактериальная ДНК – через TLR-9;

3- бактериальные молекулы – ЛПС, рецеп-тором для них служат TLR-4 (СD 14);

4- синтетические индукторы.

Пик выработки интерферонов I типа наблюдается через 6-12 час.

Биологические эффекты интерферонов I типа:

1. Противовирусное действие (ифНα, ифНβ)

2. Усиление защиты от внутриклеточных патогенов (антибактериальное действие).

Механизмы:

1- активация метаболической, фагоцитарной и бактериальной активности макрофагов;

2- стимуляция дифференцировки и повышение активности дендритных клеток и экспрессии ими костимулирующих молекул;

3- усиление выработки провоспалительных цитокинов, ИЛ-12, ИФНγ;

4- усиление дифференцировки Т-хелперов в сторону образования ThI-клеток;

5- стимуляция клеточного иммунитета.

3. Иммуномодулирующее действие:

1- повышают активность естественных клеток-киллеров;

2- усиливают ThI-зависимый клеточный иммунитет, активируют цитотоксические Т-лимфоциты;

3- стимулируют фагоцитоз;

4- влияют на антителообразование (часто угнетают) и т.д;

5- влияют на синтез цитокинов;

6- усиливают экспрессию МНС I.

4. Противоопухолевый эффект: за счет влияния на систему регуляции синтеза НК и белка клетки-хозяина.

Механизмы:

1- активация фермента протеинкиназы (нару-шение белкового обмена, подавление проли-ферации опухолевых клеток);

2- активация естественных киллеров;

3- усиление экспрессии МНС I и презентация опухолевого антигена Т-лимфоцитам (усиление клеточного иммунитета);

4- индукция дифференцировки клеток за счет ак-тивации аденилатциклазы и накопления ц АМФ;

5- антиангиогенное действие.

5. Радиопротективное действие за счет воздействия на клеточный обмен – регуляция метаболических процессов

Интерфероны II типа = ИФНγ

Обладает слабой противовирусной активностью, но имеет сильное иммунорегуляторное действие.

Основные клетки-продуценты:

I – при отсутствии иммунного ответа:

1- нормальные NK-лимфоциты,

2- NKТ-клетки,

3- макрофаги и дендритные клетки;

II – при иммунном ответе:

1- цитотоксические CD8+ Т-лимфоциты,

2- чаще ТhI-лимфоциты.

Синтез ИФНγ достигает максимума через 48-72 час. после стимуляции клеток.

Основные индукторы ИФНγ:

1- антигены

2- ИЛ-12 и ИЛ-18

3- ИЛ-23 и ИЛ-27

С ними взаимодействует ИФНγ, что приводит к активации внутриклеточных процессов.

Клетки-мишени, имеющие рецепторы к ИФНγ:

1- моноциты-макрофаги: усиливают экспрессию МНС II, активируют ферменты, отвечающие за формирование активных форм кислорода и за образование индуцибельной NО. Они необходимы для внутри-клеточного киллинга микроорганизмов, в т.ч. микобактерий туберкулеза;

2- дендритные клетки: усиление экспресии МНС II, активация;

3- NK-лимфоциты: усиление цитотоксической актив-ности;

4- В-лимфоциты: участие в дифференцировке, усиление выработки IgG2α-антител, снижения IgЕ и IgG1-антител;

5- CD8+-лимфоциты: участие в дифференцировке клеток и формировании клеточного адаптивного иммунитета;

6- Тh2-лимфоциты: ослабление дифференцировки и секреции ИЛ-4 и ИЛ-5

Интерферон синтезируется в организме постоянно, и его концентрация в крови де­ржится на уровне примерно 2 МЕ/мл (1 меж­дународная единица — ME — это количество интерферона, защищающее культуру клеток от 1 ЦПД50 вируса). Выработка интерферона резко возрастает при инфицировании виру­сами, а также при воздействии индукторов интерферона, например РНК, ДНК, сложных полимеров. Такие индукторы интерферона получили название интерфероногенов.

Механизм действия интерферона сложен. Интерферон непосредственно на вирус вне клетки не действует, а связывается со спе­циальными рецепторами клеток и оказыва­ет влияние на процесс репродукции вируса внутри клетки на стадии синтеза белков.

Действие интерферона тем эффективнее, чем раньше он начинает синтезироваться или пос­тупать в организм извне. Поэтому его использу­ют с профилактической целью при многих ви­русных инфекциях, например гриппе, а также с лечебной целью при хронических вирусных инфекциях, таких как парентеральные гепати­ты (В, С, D), герпес, рассеянный склероз и др. Интерферон дает положительные результаты при лечении злокачественных опухолей и забо­леваний, связанных с иммунодефицитами.

Интерфероны обладают видоспецифичностью, т. е. интерферон человека менее эффек­тивен для животных и наоборот. Однако эта видоспецифичность относительна. Получают интерферон двумя способами: а) путем инфи­цирования лейкоцитов или лимфоцитов кро­ви человека безопасным вирусом, в результате чего инфицированные клетки синтезируют интерферон, который затем выделяют и конс­труируют из него препараты интерферона; б) генно-инженерным способом — путем выра­щивания в производственных условиях рекомбинантных штаммов бактерий, способных продуцировать интерферон. Обычно используют рекомбинантные штаммы псевдомонад, кишечной палочки со встроенными в их ДНК генами интерферона. Интерферон, получен­ный генно-инженерным способом, носит на­звание рекомбинантного. В нашей стране рекомбинантный интерферон получил офици­альное название «Реаферон». Производство этого препарата во многом эффективнее и дешевле, чем лейкоцитарного.

Рекомбинантный интерферон нашел ши­рокое применение в медицине как профилак­тическое и лечебное средство при вирусных инфекциях, новообразованиях и при иммунодефицитах.

Белки (реактанты) острой фазы представляют группу протеинов, секре-тируемых гепатоцитами. При воспалении продукция белков острой фазы изменяется.Белки острой фазы в ускоренном и упрощенном варианте воспроизводят некоторые эффекты антител.

Белки острой фазы:

К белкам острой фазы относятся:

1. Пентраксины (С-реактивный белок, сывороточный амилоид А)

2. Транспортные белки (маннозасвязывающий белок, гаптоглобин, гемопексин, церулоплазмин)

3. Компоненты комплемента (C1-ингибитор, компоненты С2, С3, С4,

фактор В)

4. Факторы свертывания крови (Фибриноген, протромбин, фактор VIII,

плазминоген)

Пентраксины

Наиболее полно проявляют свойства реактантов острой фазы белки семейства пентраксинов: в первые 2–3 сут развития воспаления их концентрация в крови повышается на 4 порядка. Основной индуктор их синтеза — IL-6. Концентрация пентраксинов в сыворотке резко возрастает при воспалении: С-реактивного белка и сывороточного амилоида Р — с 1 мкг/мл до 1–2 мг/мл (т.е. в 1000 раз). Они вариант растворимых патогенраспознающих рецепторов

Цитокины – эндогенные пептиды, медиаторы межклеточного взаимодействия. Самая многочисленная, наиболее важная и универсальная

в функциональном отношении группа гуморальных факторов системы

иммунитета, в равной степени важная для реализации врожденного и адап-

тивного иммунитета. Цитокины участвуют во многих процессах; их нельзя

назвать факторами, относящимися исключительно к иммунной системе, поскольку они играют важную роль в кроветворении, тканевом гомеостазе,

межсистемной передаче сигналов.

В 1979 г. на симпозиуме по лимфокинам в Интерлакене (Швейцария) установили правила идентификации факторов этой группы, которым присвоили групповое название «интерлейкины» (IL) (название не только отражает способность этих молекул опосредовать межлейкоцитарные взаимодействия, но и несет отзвук названия места, где родился этот термин). Первоначально к цитокинам относили только растворимые факторы. Однако со временем выяснилось, что некоторые из них (например IL-1α у человека) существуют в основном в связанной с мембранами форме. Затем оказалось, что целым семействам цитокинов (например, семейству TNF) больше свойственна мембранная, чем секретируемая форма.

Подавляющее большинство генов цитокинов индуцибельные. Это означает, что без специального стимулирующего воздействия ген не экспрессируется и белковый продукт не образуется. Действие цитокинов осуществляется через рецепторы.

Для цитокиновой сети характерны следующие свойства:

- индуцибельность синтеза цитокинов и экспрессии их рецепторов;

- локальность действия, обусловленная скоординированной экспрессией цитокинов и их рецепторов под влиянием одного и того же индуктора;

- избыточность, объясняющаяся перекрыванием спектров действия

разных цитокинов;

- взаимосвязи и взаимодействие, проявляющиеся на уровне синтеза и

реализации функций цитокинов.

Белковые продукты преимущественно активированных клеток иммунной системы, лишенные специфичности в отношении в отношении АГ и обуславливающие межклеточные коммуникации при гемопоэзе, воспалении, иммунном ответе и межсистемных взаимодействиях. К цитокинам относятся: ИЛ (факторы взаимодействия между лейкоцитами), интерфероны (цитокины с противовирусной активностью), ФНО (с цитототоксической активностью), колониестимулирующие факторы (гемопоэтические). Их продуцируют: а) стромальные соединительнотканные клетки – за гемопоэз, б) моноциты/макрофаги – медиаторов воспаления, в) лимфоциты – антигенспециф. составляющая иммунного ответа.

Биологический смысл действия цитокинов при системном воспалении на уровне целостного организма: 1) цитокины осуществляют связь между иммунной, нервной, эндокринной, кроветворной и другими системами регуляции гомеостаза и служат для их вовлечения в организацию единой защитной реакции. 2) Цитокины обеспечивают «сигнал тревоги», означающий, что настало время включить все резервы, переключить энергетические потоки и перестроить работу всех систем для выполнения одной, но важнейшей для выживания задачи – борьбы с внедрившимся патогеном.

Бета-лизины — белки сыворотки крови, синтезируемые тромбоцитами. Оказывают повреждающее действие на цитоплазматическую мембрану бактерий.

Один из факторов неспецифической защиты организма – бета-лизин – наименее изучен. При изучении антимикробной активности сыворотки крови было обнаружено присутствие в ней двух категорий антимикробных начал – термостабильной и термолабильной.

Первая была действенной в отношении бацилл, вторая – различных грамотрицательных микробов. На основании этого E. Behring в 1889 г. обозначил термостабильные антимикробные начала сыворотки крови термином «бета-лизин», а термолабильные, нестойкие факторы - «альфа-лизин». Относительно механизма действия бета-лизинов на микроорганизмы литературные данные немногочисленны. Еще в 1936 г. A. Petterson установил, что антибактериальное действие бета-лизинов не нуждается в присутствии комплемента, однако им необходимы в качестве кофактора ионы Са++. По данным О.В. Бухарина и соавт., (1977), основной «мишенью» бета-лизина является цитоплазматическая мембрана. Очевидно, гибель клеток обусловлена именно лизисом клеточной стенки ферментами (аутолизинами), расположенными в цитоплазматической мембране, активируемыми и освобождаемыми при взаимодействии бета-лизинов с цитоплазматической мембраной.

Из работ J.J. Hirch (1960), K. Kelleu (1980) известно, что бета-лизины найдены не только в сыворотке, но и в тромбоцитах, причем в большом количестве.