Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

КР2 ответы

.pdf
Скачиваний:
27
Добавлен:
10.06.2023
Размер:
13.37 Mб
Скачать

частота возникновения вызываемого эффекта в экспонируемой популяции, находится на "допустимом" (выбранном) уровне. Эта доза рассчитывается путем математического моделирования. Обычно, в качестве "допустимого" принимают воздействие, при котором в популяции количество смертей от новообразований увеличится не более чем на 1 случай на миллион, при условии контакта людей с токсикантом в течение всей жизни. Такая величина называется виртуальная безопасная доза (ВБД).

За рубежом, для таких веществ риск выражают как вероятностную величину. В частности для оценки риска канцерогенеза используют "фактор канцерогенной активности вещества". Эта величина определяется с помощью расчетных методик на основе эксперимента и представляет собой угол наклона зависимости между величинами вероятности развития новообразования и действующей дозы токсиканта (q). Результат умножения величины ХЕП на q дает безразмерную величину риска развития новообразования. Если эта величина превышает установленный уровень, воздействие признается опасным.

Порядок расчета опасности воздействия веществ осуществляется по формуле: Риск = 1 - exp(-ХЕП)*q, где

Риск - вероятность развития конкретной опухоли при анализируемой величине ХЕП; ХЕП - величина хронического ежедневного приема, усредненная на 70 лет жизни (мг/кг/сут); q – «фактор канцерогенной активности вещества».

Из-за большого разнообразия свойств токсикантов невозможно создать единый сценарий, позволяющий оценивать риск всех химических веществ во всех возможных ситуациях. Существует методология поэтапного решения задачи, которая включает четыре элемента:

1.Идентификация опасности

Входе этого этапа определяют, какие вещества оказывают воздействие на организм, пути их поступления в окружающую среду, обладают ли они потенциальной способностью вызывать неблагоприятные эффекты в организме (в том числе канцерогенное, мутагенное и др.), изменять среду обитания. Все доступные данные по токсикантам собираются, систематизируются и

используются для оценки токсического потенциала веществ.

2. Оценка воздействия

Оценка воздействия - этап, на котором количественно определяют дозу токсиканта, действующую на организм в конкретной анализируемой ситуации (экспозиционная доза). При этой оценке определяют популяцию лиц, подвергающихся воздействию, а также частоту, продолжительность действия токсиканта и его способ воздействия на организм.

В результате получают данные, позволяющие оценить по формуле количество вещества,

поступающего в организм в течение длительного и пожизненного воздействия: I = (C*R*D)/(W*T), где

I - количество вещества, поступающего в организм (мг/кг); C - концентрация токсиканта в среде (средняя концентрация за период воздействия: мг/л; мг/м3 и т.д.); R - количество зараженного элемента внешней среды, поступающего в организм в сутки (л/день, г/день); D - кратность и продолжительность воздействия; W - средний вес тела человека за весь период воздействия; Т - время, в течение которого получены усредненные данные.

3. Оценка токсичности

Третий этап исследования состоит в установлении зависимости "доза-эффект" для изучаемых веществ. Конечная цель этого этапа работы заключается в установлении уровня доз, при которых появляются неблагоприятные эффекты от действия токсиканта на организм. Если эти характеристики уже найдены, но не утверждены законодательно, исследования могут быть продолжены в требуемом объеме. Если данных нет, можно попытаться получить ориентировочные значения токсичности веществ, прибегая к расчетным методам.

4. Характеристика риска.

Это конечный этап работы. В нем обобщается вся информация, полученная на предыдущих этапах и рассчитываются количественные характеристики риска, в частности индекс опасности.

Недостатки методологии оценки риска:

1.Использование экстраполяции данных;

2.Неадекватные исследования (неподходящие условия исследований);

3.Различия в механизмах токсического действия (их не учитывают для генотоксикантов и эпигенотоксикантов);

4.Популяционные различия;

5.Неопределенность при оценке воздействия (разные условия внешней среды при исследованиях);

Неопределенность, связанная с комбинированным действием токсикантов (не учитывают действие смесей из нескольких соединений).

24Общие.закономерноститоксикокинетики.Растворение, конвекция,диф,осмосфильтрация, узия,транспортчерез биологическиебарьеры.

В ходе поступления, распределения, выведения вещества осуществляются процессы его перемешивания (конвекция), растворения в биосредах, диффузии, осмоса, фильтрации через биологические барьеры. Конкретные характеристики токсикокинетики определяются как свойствами самого вещества, так и структурно-функциональными особенностями организма. Важнейшими характеристиками вещества, влияющими на его токсикокинетические параметры, являются:

-коэффициент распределения в системе масло/вода - определяет способность накапливаться в соответствующей среде: жиро-растворимиые - в липидах; водо-растворимые - в воде;

-размер молекулы - влияет на способность диффундировать в среде и проникать через поры биологических мембран и барьеров;

-константа диссоциации - определяет относительную часть молекул токсиканта, диссоциировавших в условиях внутренней среды организма, т.е. соотношение молекул, находящихся в ионизированной и неионизированной форме. Диссоциировавшие молекулы (ионы) плохо проникают через ионные каналы и не проникают через липидные барьеры;

-химические свойства - определяют сродство токсиканта к химическим и биохимическим элементам клеток, тканей и органов.

Свойства организма, влияющие на токсикокинетику ксенобиотиков. Свойства компартментов:

-соотношение воды и жира в клетках, тканях и органах. Биологические структуры могут содержать либо мало (мышечная ткань), либо много жира (биологические мембраны, жировая ткань, мозг);

-наличие молекул, активно связывающих токсикант. Например в костях имеются структуры, активно связывающие не только кальций, но и другие двухвалентные металлы (свинец, стронций и т.д.). Свойства биологических барьеров:

-толщина;

-наличие и размеры пор;

- наличие или отсутствие механизмов активного или облегченного транспорта химических веществ.

Растворение и конвекция

Растворение - процесс накопления вещества в жидкой фазе (растворителе) в молекулярной или ионизированной форме. Количественно процесс характеризуется растворимостью, т.е. максимальным количеством вещества, способным накапливаться в данном объеме растворителя при определенной температуре и давлении. Основными растворителями организма являются вода и липиды (жировая ткань, липиды биологических мембран и т.д.). Растворимость определяется физическим и химическим сродством молекул растворителя и растворяемого вещества. Как правило хорошо растворяются друг в друге подобные по физико-химическим свойствам вещества - полярные молекулы в полярных растворителях (воде), неполярные молекулы в неполярных растворителях (липидах).

Конвекция. Без явления конвекции жизнь организма была бы невозможна, так как только благодаря ей осуществляется быстрый обмен веществами между внешней и внутренней средами. Вещества, проникшие в кровоток, распределяются в организме также путем механического перемешивания, т.е. конвекции. Они в считанное время распространяются по всему организму, проникая как в хорошо, так и плохо кровоснабжаемые органы.

Так, через органы с общей массой 7% от массы тела (мозг, легкие, сердце, печень, почки) за минуту протекает 70% объема минутного сердечного выброса крови. Поэтому токсиканты, попавшие в кровоток, прежде всего, окажутся в этих органах. Напротив, шунтирование крови и исключение из кровотока отдельных участков органа или ткани может полностью предотвратить поступление сюда токсиканта.

Движущей силой конвекции является градиент давления крови р, создаваемый периодическим сокращением сердечной мышцы. Ламинарное движение жидкости по неподвижной трубке подчиняется закону Хагена-Пуазейля, в соответствии с которым, скорость движения обратно пропорциональна радиусу трубки. Этому же закону, с известными ограничениями, подчиняется и движение крови по сосудам. Так как суммарная площадь сечения капиллярного русла в 700 раз больше площади сечения аорты, скорость кровотока по капиллярам существенно ниже, чем в аорте (в капиллярах - 0,03 - 0,05 см/сек; в аорте - 20 см/сек). Поэтому перемешивание токсиканта в крови, в основном осуществляется в сердце, аорте и крупных сосудах.

Сердечно-сосудистая недостаточность затрудняет распределение веществ в организме.

Диффузия в физиологической среде

Диффузия - процесс перемещения массы вещества в пространстве в соответствии с градиентом концентрации, осуществляемый вследствие хаотического движения молекул. Диффузия веществ в воде описывается уравнением Фика: Y = -Дp C/ l S t, где

Y - количество диффундирующего вещества;

Дp - коэффициент диффузии вещества в воде (для различных веществ можно найти в справочниках). С увеличением молекулярной массы вещества величина коэффициента диффузии, как правило, уменьшается;

C/ l - градиент концентраций вещества в различных участках среды; S - площадь диффузионной поверхности.

t - время

При изучении диффузии газов между воздухом и тканями животных целесообразно соотносить скорость процесса с величиной парциального давления газов.

Физиологически значимые диффузионные процессы осуществляются на небольшие расстояния - от нескольких микрон до миллиметра. Дело в том, что время диффузии возрастает пропорционально квадрату пути, проходимому молекулой (для диффузии на расстояние 1 мкм потребуется время 10-2 с, для 1 мм - 100 с, для 10 мм - 10000 с, т.е. три часа). Поэтому распределение веществ в организме осуществляется путем конвекции, преодоление различного рода барьеров - путем диффузии.

Процесс диффузии веществ в биологических средах, таких как плазма крови, ликвор, внутри- и межклеточная жидкость имеет некоторые особенности. Компонентами биологических жидкостей, влияющими на процесс диффузии ксенобиотиков, являются как низкомолекулярные (K+ , Na+ , Ca2+, Cl- , HCO3 - , H2PO4 - , мочевина, аминокислоты и т.д.), так и высокомолекулярные

вещества. К числу последних, например, в плазме крови относятся белки (альбумины, глобулины, фибриноген), липопротеины и т.д. Свободная диффузия ксенобиотиков значительно ограничивается упомянутыми веществами. Особенно сильно влияет на процессы распределения химическое взаимодействие токсикантов с компонентами биологических жидкостей (в основном белками - размер образующихся комплексов в 200 - 700 раз превосходят размеры свободных токсикантов) - связавшиеся вещества практически утрачивают способность проникать через биологические барьеры не только путем диффузии, но и фильтрации.

Проникновение веществ через биологические барьеры

Биологические мембраны представляют собой двойной слой молекул липидов, гидрофильные участки которых обращены в сторону водной фазы, а гидрофобные погружены внутрь мембраны. В липидный бислой встроены молекулы протеинов, которые и определяют тип мембраны, её физиологическую и морфологическую идентичность, свойства и, в том числе, проницаемость для химических веществ. Через биологические мембраны могут проходить жирорастворимые вещества, молекулы воды и лишь некоторые низкомолекулярные гидрофильные соединения. Для объяснения этого феномена постулируется, что липидные мембраны имеют гидрофильные "поры" диаметром до 0,4 нм. В соответствии с жидкостно-мозаичной моделью Зингера и Николсона, эти "поры" представляют собой проницаемые точки неупорядоченной структуры мембраны (точки выпадения). С позиций теории упорядоченности белковых молекул в мембране, поры - ионные каналы, образуемые белками.

Так, постулировано, что отдельные протеины способны свободно диффундировать в липидном бислое, другие фиксированы в структуре цитоскелета. Большинство таких протеинов образуют в плоскости мембраны структуры, порой состоящие из нескольких субъединиц, обеспечивающие функциональный контакт клетки с окружающей средой. Примером таких структур являются ионные каналы, регулирующие проницаемость биомембран для ионов натрия, калия, кальция, хлора. Например, натриевый канал представляет собой крупный белковый комплекс, встроенный в липидную мембрану, состоящий из 4 гомологичных субъединиц, каждая из которых образован 8 различными белками. Такими же сложными структурами являются мембранные поры, через которые осуществляется транспорт других ионов и молекул.

Упрощенно любой биологический барьер, поскольку он формируется клеточными структурами, можно представить как липидную поверхность с определенным количеством пор (каналов) разного диаметра. В качестве гидрофильных каналов в сложных биологических барьерах выступают не только поры клеточных мембран, но и промежутки между клетками, которые также называются порами. Сравнение площадей непрерывного липидного слоя и суммарной поверхности пор показывает, какова относительная проницаемость конкретного биологического барьера для липофильных и гидрофильных веществ. Хотя такие представления являются более чем упрощенными, они позволяют объяснять поведение токсикантов внутри организма.

Осмос

Осмос - процесс перемещения растворителя через мембрану, не проницаемую для растворенного вещества, в сторону его более высокой концентрации.

Биологические жидкости представляют собой многокомпонентные растворы, в которых осмотическое давление всех растворенных частиц пропорционально их общей концентрации. При

интоксикациях осмотическое давление внутри и вне клеток за счет попадания во внутреннюю среду молекул токсикантов практически не изменяется. Тем не менее это явление имеет определенное токсикологическое значение.

Клетки организма ведут себя, как осмометр, снабженный полупроницаемой мембраной. Если они взаимодействуют с гипоосматической средой, внутрь клеток поступает вода. В результате увеличивается их объем. При значительном увеличении объема клеточная мембрана разрушается, клеточное содержимое выходит в среду. Это явления называется цитолизом (для эритроцитов - гемолизом). Вещества, нарушающие эластичность биологических мембран (мышьяковистый водород, сурьмянистый водород и др.), снижают резистентность клеток к колебаниям осмотического давления среды и вызывает гемолиз. Реакция антиген-антитело может приводить к существенному изменению проницаемости клеточных мембран, а это в свою очередь также становится причиной лизиса клеток. В гиперосмотической среде клетки отдают воду, и объем их уменьшается (в крови появляются "звездчатые" эритроциты).

В целом явление осмоса оказывает несущественное влияние на токсикокинетические характеристики ксенобиотиков. Однако при назначении осмотических диуретиков удается существенно повысить интенсивность процесса отделения мочи путем увеличения осмотического давления жидкости внутри почечных канальцев, и затруднения тем самым реабсорбции воды. В этих условиях ускоряется процесс элиминации выделяемых через почки некоторых ксенобиотиков и продуктов их метаболизма.

Фильтрация

Под фильтрацией понимают процесс просачивания жидкости с растворенными в ней молекулами веществ под действием механической силы (гидростатическое, осмотическое давление) через пористые мембраны, задерживающие крупнодисперсные частицы. Размер фильтруемых частиц определяется размерами пор мембраны. Поскольку диаметр пор биологических мембран мал, в организме путем фильтрации разделяются не только грубодисперсные "частицы" (клетки крови), но и растворенные в биологических жидкостях молекулы (ультрафильтрация).

Скорость фильтрации или объем жидкости, проходящий через пористую мембрану за единицу времени зависит от:

1.Различия гидростатического давления по обе стороны мембраны, т.е. градиента давления;

2.Вязкости жидкости, которая в свою очередь, зависит от температуры;

3.Проницаемости мембраны, которая определяется размерами пор, их числом, структурой, особенностями взаимодействия стенки мембраны с жидкостью;

4.Площади фильтрующей поверхности.

На скорость фильтрации ксенобиотиков в органах, кроме того, влияют дополнительные факторы:

1.Детерминированные свойствами организма: давление крови, количество функционирующих фильтрующих образований (капилляров, почечных клубочков и т.д.);

2.Обусловленные свойствами веществ: размеры и форма молекул, особенности взаимодействия с порами.

Фильтрация осуществляется главным образом в капиллярном отделе кровеносного русла: капилляры проницаемы для низкомолекулярных веществ. На принципе фильтрации основана работа гломерулярного аппарата почек, в котором происходит образование первичной мочи. Путем фильтрации из организма выделяется подавляющее большинство ксенобиотиков. Капиллярная фильтрация. При введении веществ непосредственно в кровь, они активно фильтруются в ткани, и наоборот, вещества попадающие в межклеточное пространство, например при подкожном или накожном введении - активно абсорбируются в кровяное русло. В основе действия веществ, усиливающих или блокирующих проницаемость капилляров, лежит не только способность изменять размеры и количество пор в стенке сосуда, но и влияние на диаметр капилляров в артериальном и венозном отделах, т.е внутрикапиллярное давление.

25Резорбция. ксенобиотиков. черезкожу,слизистыебция оболочки,вкиш,влегких,чнтз.анкей

Резорбция через кожу

С позиций токсикокинетики особый интерес представляет поверхностный роговой слой эпидермиса, препятствующий резорбции многих чужеродных веществ. Поверхностный слой кожи состоит из ороговевших эпидермоцитов. Его толщина равна 20 - 40 мкм, поверхность покрыта жировой смазкой. В роговом слое содержится 5 - 15% воды. При длительном контакте с водой или водосодержащими средами количество воды в роговом слое увеличивается до 50%, однако, в кровоток вода не проникает. Расстояние, отделяющее роговой слой от капилляров дермального слоя составляет в среднем 0,2 - 0,4 мм. Кожа представляет собой электрически заряженную мембрану. Её наружная поверхность несет отрицательный заряд. В области роста волос, устий сальных и потовых желез целостность рогового слоя нарушается. Здесь же вокруг волосяных фолликулов, сальных и потовых желез локализуется разветвленная сеть капилляров. Проникновение веществ через кожу осуществляется тремя путями: через эпидермис, через сальные и потовые железы, через волосяные фолликулы. Для хорошо проникающих через кожу низкомолекулярных и липофильных соединений основным является трансэпидермальный путь, поскольку относительная суммарная площадь поверхности двух других путей мала и составляет менее 1% от общей площади поверхности кожи. Для веществ, медленно всасывающихся через кожные покровы, трансфолликулярный и трансгландулярный пути могут иметь существенное значение. Особенно в начальной стадии пенетрации отмечается значительное накопление липофильных ксенобиотиков в перифолликулярном и перигландулярном пространстве. Однако в дальнейшем прямое проникновение веществ через эпидермоциты приобретает первостепенное значение. Такие хорошо растворяющиеся в жирах вещества как сернистый и азотистый иприты проникают через кожу трансэпидермально.

При трансэпидермальном проникновении веществ возможно как прохождение их непосредственно через клетки, так и через межклеточные пространства.

При рассмотрении процесса прохождения веществ через кожу следует различать собственно резорбцию (проникновение веществ в кровь) и фиксацию токсикантов в кожных покровах.

В силу того, что многие токсиканты проникают через кожу чрезвычайно медленно, орган может выполнять функции своеобразного депо. Развивающиеся эффекты в этом случае формируются постепенно и по прошествии достаточно продолжительного скрытого периода.

Проникновение ксенобиотиков через кожу представляет собой процесс пассивной диффузии. До настоящего времени не зарегистрировано случаев активного трансдермального транспорта веществ. Резорбция веществ, умеренно растворимых в воде со средней массой молекулы, описывается уравнением Фика. На скорость резорбции влияют многочисленные факторы, среди которых важнейшие:

-площадь и локализация резорбирующей поверхности;

-интенсивность кровоснабжения кожи;

-свойства токсиканта.

Кровоснабжение кожи слабее многих других органов, например мышц. Вместе с тем скорость кровотока не является лимитирующим фактором проникновения веществ. При активации кровотока несколько усиливается резорбция лишь токсикантов, в принципе способных проникать через кожные покровы.

На процесс резорбции в наибольшей степени влияют физико-химические свойства токсикантов и прежде всего способность растворяться в липидах (липофильность). Существует отчетливая корреляция между величиной коэффициента распределения в системе масло/вода и скоростью резорбции. Липофильные агенты (например, ФОС, иприты, хлорированные углеводы и др.) достаточно легко преодолевают кожный барьер. Гидрофильные агенты, и особенно заряженные молекулы, практически не проникают через кожу. В этой связи проницаемость барьера для слабых кислот и оснований существенно зависит от степени их диссоциации. Так, салициловая кислота и нейтральные молекулы алкалоидов способны к резорбции, однако анионы кислоты и катионы алкалоидов этим путем в организм не проникают. Вместе с тем проникновение в

организм липофильных веществ, вообще не растворяющихся в воде, также невозможно: они депонируются в жировой смазке и эпидермисе и не захватываются кровью. Поэтому масла не пенетрируют через кожу.

Газы, такие как кислород, азот, диоксид углерода, сероводород, аммиак, гелий, водород - способны к кожной резорбции. На скорости процесса, прежде всего, сказывается их липофильность и концентрация в окружающей среде. Увеличение парциального давления газа в воздухе ускоряет его проникновение в организм, что может приводить к тяжелым интоксикациям. Так, для кроликов содержание H2S в воздухе в концентрации 9,3% оказывается смертельным (ингаляционное воздействие исключено).

Резорбция через слизистые оболочки

Слизистые оболочки, не зависимо от того, образованы они многослойным или однослойным эпителием, кубическими или плоскими клетками, лишены рогового слоя и жировой пленки на поверхности. Они покрыты водной, иногда с примесью слизи, пленкой. Их функция состоит в осуществлении обмена веществом между организмом и внешней средой. Эти отличия от кожи объясняют, почему многие вещества достаточно легко проникают через слизистые оболочки. Резорбтивная способность для слизистых разных анатомических областей близка, хотя структурные особенности организации и топография некоторых образований лежат в основе наблюдаемых различий. Резорбция веществ через слизистые определяется главным образом следующими факторами:

-агрегатным состоянием вещества (газ, аэрозоль, взвесь, раствор);

-дозой и концентрацией токсиканта;

-видом слизистой оболочки, её толщиной;

-продолжительностью контакта;

-интенсивностью кровоснабжения анатомической структуры;

-дополнительными факторами (параметры среды, степень наполнения желудка и т.д.)

Резорбция в ротовой полости

Многие токсиканты достаточно быстро всасываются уже в ротовой полости. Эпителий полости рта не представляет собой значительной преграды на пути ксенобиотиков. В резорбции участвуют все отделы ротовой полости. Хотя площадь поверхности не велика, однако слизистая здесь хорошо снабжается кровью. Поскольку рН слюны лежит в диапазоне 6,6 - 6,9, то есть незначительно отличается от рН крови, эта характеристика мало сказывается на процессе резорбции ксенобиотиков - слабых электролитов (кислот и оснований).

Оттекающая от слизистой полости рта кровь поступает в верхнюю полую вену и потому всосавшееся вещество попадает непосредственно в сердце, малый круг кровообращения, а затем и общий кровоток. В отличии от других способов проникновения через слизистые желудочно-кишечного тракта, при резорбции в ротовой полости, всосавшиеся токсиканты распределяются в организме минуя печень, что сказывается на биологической активности быстро метаболизирующих соединений.

Резорбция в желудке

В целом ксенобиотики плохо всасывается в желудке, хотя его слизистая оболочка мало отличается от слизистой других отделов желудочно-кишечного тракта. В основе резорбции лежит механизм простой диффузии. Специальные переносчики ксенобиотиков в слизистой не обнаружены. Фактором, определяющим особенности желудка, как органа резорбции, является кислотность желудочного содержимого. Как и для пенетрации через другие биологические барьеры скорость процесса в значительной степени определяется коэффициентом распределения веществ в системе масло/вода. Жирорастворимые (или растворимые в неполярных органических растворителях) соединения достаточно легко проникают через слизистую желудка в кровь.

Резорбция в кишечнике

Кишечник, в силу особенностей строения, является одним из основных мест всасывания химических веществ. Перистальтика кишечника обеспечивает перемешивание содержимого, вследствие чего поддерживается высокая концентрация веществ на границе контакта гумуса с клетками слизистой оболочки.

Молекулы-субстраты обмена веществ и структурные элементы живого (глюкоза, аминокислоты, электролиты, нуклеотиды и т.д.) резорбируются в кишечнике посредством активного транспорта. Ксенобиотики - структурные аналоги этих молекул, например 5-фторурацил, ксилит, аналоги аминокислот и т.д., также могут поступать в организм с помощью этих механизмов. Таким же способом пенетрируют гликозиды, среди которых немало высокотоксичных веществ (амигдалин, дигитоксин, буфотоксин и др.). Однако основным является механизм пассивной диффузии веществ через эпителий. Пассивная диффузия в кишечнике - дозо-зависимый процесс. При увеличении содержания токсиканта в кишке увеличивается и скорость его всасывания, но при сохранении процента всосавшегося вещества.

Резорбция обусловлена не только проникновением через липидные мембраны незаряженных молекул. В незначительном количестве через слизистые кишечника проникают ионы слабых кислот и оснований. Этот поток ксенобиотиков, вероятно обусловлен диффузией через поры. Соотношение объемов пенетрации незаряженных и заряженных молекул одного и того же вещества неодинаково и зависит от его строения. Так, для амидопирина оно составляет 11 : 1; для салициловой кислоты - 6 : 1. Некоторые токсиканты (паракват, дикват) и антидоты (d- пенициламин) абсорбируются в кишечнике в достаточном количестве, хотя действуют в ионизированной форме.

В целом резорбция веществ в кишечника подчиняется тем же законам, что и в желудке, хотя имеются существенные особенности.

Резорбция в легких

Легкие - орган, предназначенный для осуществления обмена веществом, в частности жизненно важными газами, между организмом и окружающей средой. Помимо вдыхаемого О2 и другие вещества, находящиеся в форме газа или пара, могут легко проникать через легкие в кровоток. Для этого токсикант должен преодолеть лишь тонкий капиллярно-альвеолярный барьер. Благоприятным условием всасывания веществ является также большая площадь поверхности легких.

Продвижение газов по дыхательным путям сопряжено с их частичной адсорбцией на поверхности трахеи и бронхов. Сайт депонирования ингалируемых газов определяется степенью их растворимости в тонком слое жидкости, выстилающей слизистую дыхательных путей и альвеолярный эпителий. Чем хуже растворяется вещество в воде, тем глубже проникает оно в легкие.

Ингаляционно в организм могут поступать не только газы и пары, но и аэрозоли, которые также достаточно быстро могут всасываться в кровь.

В конечном итоге в тканях (в частности в ЦНС) аккумулируется определенная концентрация токсиканта, при которой формируется токсический процесс соответствующей степени тяжести (оглушенность, наркоз, кома). При достижении состояния равновесия в системе продолжение ингаляции газа (пара) в прежней концентрации не приведет к увеличению содержания ксенобиотика в тканях.

Резорбция из тканей

При действии веществ на раневые поверхности или введении в ткань (например, подкожно или внутримышечно) с помощью специальных устройств, возможно их поступление либо непосредственно в кровь, либо сначала в ткани, а уже затем в кровь. При этом в ткань могут проникать высокомолекулярные (белковые), водо-растворимые и даже ионизированные молекулы. Создающийся градиент концентрации токсиканта между местом аппликации, окружающей тканью и кровью является движущей силой процесса резорбции вещества в кровь и внутренние среды организма. Скорость резорбции определяется свойствами тканей и ксенобиотиков.

Стенка капилляра представляет собой пористую мембрану. Её толщина в различных тканях колеблется от 0,1 до 1,0 мкм. Для капилляров большинства тканей человека характерны поры диаметром, в среднем, около 2 нм. Площадь поверхности, занимаемая порами, составляет около 0,1% общей площади капиллярного русла. Поры представляют собой промежутки между эндотелиальными клетками. Наличие пор делает мембрану капилляра проницаемой для водорастворимых веществ. Так, проницаемость клеточных мембран различных тканей для воды составляет 0,3 - 3,0 мкм3 /(мин атм мкм2 ), а стенки капилляра - 370 мкм3 . Полагают, что в капиллярах в очень ограниченном количестве встречаются поры и с большим диаметром (до 80 нм). Кроме того, возможен перенос веществ через стенку капилляра с помощью механизма пиноцитоза.

Стенки капилляров мышц млекопитающих имеют поры диаметром 3 - 4 нм, поэтому они не проницаемы для гемоглобина (r = 3,2 нм) и сывороточных альбуминов (r = 3,5 нм), но проницаемы для таких веществ как инулин (r = 1,5 нм) и миоглобин (r = 2 нм). В этой связи проникновение очень многих ксенобиотиков в кровь вполне возможно при их введении в мышцы.

Сеть капилляров и лимфатических сосудов хорошо развита в подкожной клетчатке и в межмышечной соединительной ткани. Площадь поверхности капиллярного русла в определенном объеме тканей оценивается по-разному, для мышц величина составляет 7000 - 80000 см2 /100 г ткани. По расчетам объем капиллярного русла в тканях не превышает 4%. Степень развития капиллярной сети лимитирует скорость резорбции ксенобиотика в ткани. Время пребывания крови в капиллярах в процессе кровообращения составляет, примерно, 25 сек, в то время как оборот объема циркулирующей крови реализуется за 1 минуту. Этим объясняют, почему степень резорбции вещества из ткани в кровь пропорциональна степени вазкуляризации тканей. Резорбция веществ из подкожной клетчатки в основном осуществляется через капилляры и в значительно меньшей степени через лимфатические сосуды.

Абсолютное количество капилляров на единицу объема тканей представляет собой лишь условную меру отражающую степень их кровоснабжения. Большое значение имеет процент раскрытых, функционирующих капилляров, а также величина давления крови в тканях. Интенсивность кровотока зависит от сердечной деятельности, а в тканях регулируется вазоактивными факторами. Такие эндогенные регуляторы, как адреналин, норадреналин, ацетилхолин, серотонин, оксид азота, эндотелий-зависимые релаксирующие факторы, простогландины и т.д. существенно влияют на скорость кровотока в ткани и, следовательно, процесс резорбции ксенобиотиков.

Охлаждение конечности вызывает замедление в ней кровотока, нагревание - ускорение.

Как указывалось, поры капилляров имеют диаметр 3 - 4 нм. Поэтому через них могут проникать большие водорастворимые молекулы. Даже такие макромолекулы как инсулин (МВ 5733), тетанотоксин, ботулотоксин всасываются в тканях. Молекулярная масса большинства известных высокотоксичных веществ составляет около 100 - 500 Д. Поэтому их пенетрация через стенки капилляров не лимитирована диаметром пор. Подсчитано, что диффузионная возможность капилляров для низкомолекулярных веществ в 40 - 120 раз превышает их предельную концентрацию в плазме крови. В этой связи многие токсичные ксенобиотики легко всасываются в кровь при непосредственном введении их в ткани (подкожно или внутримышечно). К числу таковых относятся давно известные человеку стрельные яды, использовавшиеся еще доисторическим человеком для охоты, содержавшие курарин, строфантин, буфотоксины и т.д. Высокомолекулярное вещество инулин (МВ 5500)используют в эксперименте для изучения закономерностей резорбции веществ в тканях. Так, установлены известные ограничения

Соседние файлы в предмете Токсикология