Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
6
Добавлен:
15.04.2023
Размер:
7.16 Mб
Скачать

111

ВЫВОДЫ

1.Получена линия мышиных эмбриональных фибробластов, нокаутных по гену Nf2, моделирующая нейрофиброматоз II типа.

2.Сравнение данной линии с исходной (контрольной) показало, что полученные Nf2-отрицательные клетки отличаются от контрольных по морфологии (имеются признаки дезорганизации актинового цитоскелета, отсутствуют плотные клеточные контакты), большей скоростью роста и устойчивостью к неблагоприятным воздействиям среды.

3.На полученных клеточных линиях проведён скрининг коллекции 486 низкомолекулярный биоактивных соединений, который выявил 9 веществ, обладающих селективностью в отношении Nf2-отрицательных клеток.

Из отобранных по результатам скрининга 9 соединений-кандидатов 2

– ингибитор 3-гидрокси-3-метилглутарил-коА-редуктазы ловастатин и ингибитор синтазы жирных кислот церуленин – прошли первичную валидацию результатов скрининга, проявив стабильную селективность в отношении различных Nf2-отрицательных клеток. Селективность оказалась также характерна для фармакологических аналогов данных соединений (гиполипидемических препаратов группы статинов и ингибиторов синтазы жирных кислот лютеолина и С75), а реэкспрессия белка мерлин в Nf2-отрицательных клетках приводила к обращению токсичности исследуемых соединений. При изучении механизмов действия данных веществ селективная цитотоксичность в отношении Nf2-отрицательных клеток была также установлена для ингибитора геранилтрансфераз золедроновой кислоты.

4.Исследование механизмов действия соединений, выбранных по результатам скрининга, показало, что селективная цитотоксичность ловастатина в отношении Nf2-отрицательных клеток обусловлена раъякориванием малой ГТФазы Rac1 и отсоединением её от клеточной мембраны. Под действием

112

ловастатина Rac1 транслоцируется в ядро и актвируется в Nf2- отрицательных клетках, вызывая клеточную гибель. Селективная цитотоксичность церуленина обусловлена различиями в уровнях метаболизма жирных кислот в Nf2-отрицательных и нормальных клетках. Было показано, что под влиянием церуленина накопление промежуточных продуктов синтеза насыщенных жирных кислот в Nf2-отрицательных клетках происходит интенсивнее в 1,5 – 2,5 раза по сравнению с контрольными клетками. Также, в Nf2-отрицательных клетках уровень экспрессии ферментов, участвующих в липогенезе, повышен на 50 – 200% по сравнению с контрольными клетками.

5.Ингибитор 3-гидрокси-3-метилглутарил-коА-редуктазы ловастатин, ингибитор геранилтрансферазы I золедроновая кислота и ингибитор синтазы жирных кислот церуленин обладают выраженной противоопухолевой активностью в испытаниях in vivo на мышах с ксенографтной трансплантацией мышиных и крысиных шванном. Все три соединения снижали скорость роста шванном на 80% по сравнению с контрольной группой.

113

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

Материалы диссертационной работы по изучению метаболического профиля Nf2-отрицательных опухолевых клеток могут быть использованы в разработке методов фармакотерапии для лечения НФ II. Описанные в данной работе изменения уровней синтеза жирных кислот, характерные для опухолей, ассоциированных с НФ II, позволяют применить новый подход – воздействие на участвующие в данных метаболических путях ферменты – к терапии данного заболевания и могут способствовать дальнейшему изучению приложения ингибиторов синтазы жирных кислот в терапии доброкачественных опухолей нервной системы. Препараты золедроновой кислоты могут быть рекомендованы для дальнейших исследований возможности их использования в качестве противоопухолевых средств для лечения Rac-зависимых форм рака (метастазирующий рак молочной железы, немелкоклеточный рак лёгкого и др.)

БЛАГОДАРНОСТИ

Автор благодарит научного руководителя Николая Львовича Шимановского (РНИМУ им. Пирогова) и научного консультанта Джонатана Чернова (ФоксЧейзовский Онкологический Центр) за помощь в организации и планировании работы, сотрудников Фокс-Чейзовского Онкологического Центра: Маргрет Эйнарсон (управление скрининговым роботом), Йан Жу (статистическая обработка результатов скрининга), Йин-Минг Куо (управление хроматографом с масс-спектрометрией) и Галину Семёнову (помощь при измерении опухолей в ксенографтной модели); а также Марко Джованнини (Институт Гематологии, Париж) за предоставленные клетки и клеточные линии.

114

СПИСОК ЛИТЕРАТУРЫ

1.Evans, D.G., et al., A genetic study of type 2 neurofibromatosis in the United Kingdom. I. Prevalence, mutation rate, fitness, and confirmation of maternal transmission effect on severity. J Med Genet, 1992. 29(12): p. 841-6.

2.Bianchi, A.B., et al., Mutations in transcript isoforms of the neurofibromatosis 2 gene in multiple human tumour types. Nat Genet. , 1994 6(2): p. 185-92.

3.Cheng, J.Q., et al., Frequent mutations of NF2 and allelic loss from chromosome band 22q12 in malignant mesothelioma: evidence for a two-hit mechanism of NF2 inactivation. Genes Chromosomes Cancer, 1999 24(3): p. 238-42.

4.Rouleau, G.A., et al., Alteration in a new gene encoding a putative membraneorganizing protein causes neuro-fibromatosis type 2. Nature, 1993. 363(6429): p. 515-21.

5.Lallemand, D., et al., NF2 deficiency promotes tumorigenesis and metastasis by destabilizing adherens junctions. Genes Dev, 2003. 17(9): p. 1090-100.

6.Plotkin, S.R., et al., Audiologic and radiographic response of NF2-related vestibular schwannoma to erlotinib therapy. Nat Clin Pract Oncol, 2008 5(8): p. 487-91.

7.Plotkin, S.R., et al., Hearing improvement after bevacizumab in patients with neurofibromatosis type 2. N Engl J Med, 2009. 361(4): p. 358-67.

8.Liang, S.L., H. Liu, and A. Zhou, Lovastatin-induced apoptosis in macrophages through the Rac1/Cdc42/JNK pathway. J Immunol, 2006. 177(1): p. 651-6.

9.Мельников, Р.А. and В.В. Китаев, Нейрофиброматоз, in Большая медицинская энциклопедия, Б.В. Петровского, Editor. 1981, Советская энциклопедия. p. 310-311.

10.Parry, D.M., et al., Germ-line mutations in the neurofibromatosis 2 gene: correlations with disease severity and retinal abnormalities. Am J Hum Genet, 1996. 59(3): p. 529-39.

11.Baser, M.E., et al., Presymptomatic diagnosis of neurofibromatosis 2 using linked genetic markers, neuroimaging, and ocular examinations. Neurology, 1996.

47(5): p. 1269-77.

12.Ruttledge, M.H. and G.A. Rouleau, Role of the neurofibromatosis type 2 gene in the development of tumors of the nervous system. Neurosurg Focus. 19(5): p. E6.

13.Козлов, А.В., ed. Нейрофиброматоз 2 (НФ2) Хирургия опухолей основания черепа, ed. А.Н. Коновалов. 2004, Можайский полиграфический комбинат. 169-170.

14.Patronas, N.J., et al., Intramedullary and spinal canal tumors in patients with neurofibromatosis 2: MR imaging findings and correlation with genotype.

Radiology, 2001. 218(2): p. 434-42.

15.Mautner, V.F., et al., The neuroimaging and clinical spectrum of neurofibromatosis 2. Neurosurgery, 1996. 38(5): p. 880-5; discussion 885-6.

16.Okada, T., L. You, and F.G. Giancotti, Shedding light on Merlin's wizardry. Trends Cell Biol, 2007. 17(5): p. 222-9.

115

17.Ahronowitz, I., et al., Mutational spectrum of the NF2 gene: a meta-analysis of 12 years of research and diagnostic laboratory findings. Hum Mutat, 2007.

28(1): p. 1-12.

18.McClatchey, A.I., et al., The Nf2 tumor suppressor gene product is essential for extraembryonic development immediately prior to gastrulation. Genes Dev, 1997.

11(10): p. 1253-65.

19.den Bakker, M.A., et al., Expression of the neurofibromatosis type 2 gene in human tissues. J Histochem Cytochem, 1999. 47(11): p. 1471-80.

20.Kalamarides, et al., Nf2 gene inactivation in arachnoidal cells is rate-limiting for meningioma development in the mouse. Genes Dev. , 2002. 16(9): p. 1060-5.

21.Giovannini, M., et al., Conditional biallelic Nf2 mutation in the mouse promotes manifestations of human neurofibromatosis type 2. Genes Dev, 2000. 14(13): p. 1617-30.

22.Fleury-Feith, J., et al., Hemizygosity of Nf2 is associated with increased susceptibility to asbestos-induced peritoneal tumours. Oncogene. 22(24): p. 3799-805.

23.Lasota, J., et al., The neurofibromatosis type 2 gene is mutated in perineurial cell tumors: a molecular genetic study of eight cases. Am J Pathol. , 2001. 158(4): p. 1223-9.

24.Pineau, P., et al., Homozygous deletion scanning in hepatobiliary tumor cell lines reveals alternative pathways for liver carcinogenesis. Hepatology, 2003. 37(4): p. 852-61.

25.Sheikh, H.A., et al., Molecular genotyping of medullary thyroid carcinoma can predict tumor recurrence. Am J Surg Pathol. , 2004 28(1): p. 101-6.

26.Poulikakos, P.I., et al., Re-expression of the tumor suppressor NF2/merlin inhibits invasiveness in mesothelioma cells and negatively regulates FAK.

Oncogene, 2006. 25(44): p. 5960-8.

27.MacCollin, M., et al., DNA diagnosis of neurofibromatosis 2. Altered coding sequence of the merlin tumor suppressor in an extended pedigree. JAMA, 1993.

270(19): p. 2316-20.

28.Sherr, C.J., Principles of tumor suppression. Cell, 2004. 116(2): p. 235-46.

29.Bretscher, A., K. Edwards, and R.G. Fehon, ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol, 2002 3(8): p. 586-99.

30.Lankes, W.T. and H. Furthmayr, Moesin: a member of the protein 4.1-talin-ezrin family of proteins. Proc Natl Acad Sci U S A, 1991. 88(19): p. 8297-301.

31.Gonzalez-Agosti, C., et al., The merlin tumor suppressor localizes preferentially in membrane ruffles. Oncogene, 1996. 13(6): p. 1239-47.

32.McClatchey, A.I., Merlin and ERM proteins: unappreciated roles in cancer development? Nat Rev Cancer, 2003. 3(11): p. 877-83.

33.Morrison, H., et al., The NF2 tumor suppressor gene product, merlin, mediates contact inhibition of growth through interactions with CD44. Genes Dev, 2001.

15(8): p. 968-80.

116

34.Shaw, R.J., A.I. McClatchey, and T. Jacks, Regulation of the neurofibromatosis type 2 tumor suppressor protein, merlin, by adhesion and growth arrest stimuli. J Biol Chem, 1998. 273(13): p. 7757-64.

35.Kissil, J.L., et al., Merlin phosphorylation by p21-activated kinase 2 and effects of phosphorylation on merlin localization. J Biol Chem, 2002. 277(12): p. 10394- 9

36.Shaw, R.J., et al., The Nf2 tumor suppressor, merlin, functions in Rac-dependent signaling. Dev Cell, 2001. 1(1): p. 63-72.

37.Xiao, G.H., et al., p21-activated kinase links Rac/Cdc42 signaling to merlin. J Biol Chem, 2002. 277(2): p. 883-6.

38.Rong, R., et al., Serine 518 phosphorylation modulates merlin intramolecular association and binding to critical effectors important for NF2 growth suppression. Oncogene, 2004. 23(52): p. 8447-54.

39.Alfthan, K., et al., Cyclic AMP-dependent protein kinase phosphorylates merlin at serine 518 independently of p21-activated kinase and promotes merlin-ezrin heterodimerization. J Biol Chem, 2004. 279(18): p. 18559-66.

40.Barret, C., et al., Mutagenesis of the phosphatidylinositol 4,5-bisphosphate (PIP(2)) binding site in the NH(2)-terminal domain of ezrin correlates with its altered cellular distribution. J Cell Biol, 2000. 151(5): p. 1067-80.

41.Jin, H., et al., Tumorigenic transformation by CPI-17 through inhibition of a merlin phosphatase. Nature, 2006. 442(7102): p. 576-9.

42.Okada, T., M. Lopez-Lago, and F.G. Giancotti, Merlin/NF-2 mediates contact inhibition of growth by suppressing recruitment of Rac to the plasma membrane.

J Cell Biol, 2005. 171(2): p. 361-71.

43.Takizawa, N., Y. Koga, and M. Ikebe, Phosphorylation of CPI17 and myosin binding subunit of type 1 protein phosphatase by p21-activated kinase. Biochem Biophys Res Commun, 2002. 297(4): p. 773-8.

44.Maeda, M., et al., Expression level, subcellular distribution and rho-GDI binding affinity of merlin in comparison with Ezrin/Radixin/Moesin proteins. Oncogene, 1999. 18(34): p. 4788-97.

45.James, M.F., et al., The neurofibromatosis 2 protein product merlin selectively binds F-actin but not G-actin, and stabilizes the filaments through a lateral association. Biochem J, 2001. 356(Pt2): p. 377-86.

46.Brault, E., et al., Normal membrane localization and actin association of the NF2 tumor suppressor protein are dependent on folding of its N-terminal domain. J Cell Sci, 2001. 114(Pt 10): p. 1901-12.

47.Scoles, D.R., et al., Neurofibromatosis 2 tumour suppressor schwannomin interacts with betaII-spectrin. Nat Genet., 1998. 18(4): p. 354-9.

48.Grönholm, M., et al., Homotypic and heterotypic interaction of the neurofibromatosis 2 tumor suppressor protein merlin and the ERM protein ezrin.

J Cell Sci, 1999. 112(Pt 6): p. 895-904.

49.Meng, J.J., et al., Interaction between two isoforms of the NF2 tumor suppressor protein, merlin, and between merlin and ezrin, suggests modulation of ERM proteins by merlin. J Neurosci Res, 2000. 62(4): p. 491-502.

117

50.Nguyen, R., D. Reczek, and A. Bretscher, Hierarchy of merlin and ezrin N- and C-terminal domain interactions in homoand heterotypic associations and their relationship to binding of scaffolding proteins EBP50 and E3KARP. J Biol Chem, 2001. 276(10): p. 7621-9.

51.Fernandez-Valle, C., et al., Paxillin binds schwannomin and regulates its densitydependent localization and effect on cell morphology. Nat Genet., 2002. 31(4): p. 354-62.

52.Pelton, P.D., et al., Ruffling membrane, stress fiber, cell spreading and proliferation abnormalities in human Schwannoma cells. Oncogene, 1998.

17(17): p. 2195-209.

53.Hirokawa, Y., et al., A clue to the therapy of neurofibromatosis type 2: NF2/merlin is a PAK1 inhibitor. Cancer J, 2004. 10(1): p. 20-6.

54.Johnson, K.C., et al., Cellular transformation by a FERM domain mutant of the Nf2 tumor suppressor gene. Oncogene, 2002. 21(39): p. 5990-7.

55.Hamaratoglu, F., et al., The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat Cell Biol, 2006. 8(1): p. 27-36.

56.Maitra, S., et al., The tumor suppressors Merlin and Expanded function cooperatively to modulate receptor endocytosis and signaling. Curr Biol, 2006.

16(7): p. 702-9.

57.Silva, E., et al., The tumor-suppressor gene fat controls tissue growth upstream of expanded in the hippo signaling pathway. Curr Biol, 2006. 16(21): p. 2081-9.

58.Xiao, G.H., J. Chernoff, and J.R. Testa, NF2: the wizardry of merlin. Genes Chromosomes Cancer, 2003. 38(4): p. 389-99.

59.McClatchey, A.I. and M. Giovannini, Membrane organization and tumorigenesis--the NF2 tumor suppressor, Merlin. Genes Dev, 2005. 19(19): p. 2265-77.

60.Bosco, E.E., et al., NF2-deficient cells depend on the Rac1-canonical Wnt signaling pathway to promote the loss of contact inhibition of proliferation.

Oncogene, 2010. 29(17): p. 2540-9.

61.Manchanda, P.K., et al., Rac1 is required for Prkar1a-mediated Nf2 suppression in Schwann cell tumors. Oncogene, 2013. 32: p. 3491–3499.

62.Qiu, R.G., et al., An essential role for Rac in Ras transformation. Nature, 1995.

374(6521): p. 457-9.

63.Hill, C.S., J. Wynne, and R. Treisman, The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell, 1995. 81(7): p. 115970.

64.Khosravi-Far, R., et al., Activation of Rac1, RhoA, and mitogen-activated protein kinases is required for Ras transformation. Mol Cell Biol, 1995 15(11): p. 644353.

65.Scott, G.A. and L. Cassidy, Rac1 mediates dendrite formation in response to melanocyte stimulating hormone and ultraviolet light in a murine melanoma model. J Invest Dermatol, 1998. 111(2): p. 243-50.

118

66.Pervaiz, S., et al., Activation of the RacGTPase inhibits apoptosis in human tumor cells. Oncogene, 2001. 20(43): p. 6263-8.

67.Hodgson, L., A.J. Henderson, and C. Dong, Melanoma cell migration to type IV collagen requires activation of NF-kappaB. Oncogene, 2003. 22(1): p. 98-108.

68.Shieh, D.B., et al., Cell motility as a prognostic factor in Stage I nonsmall cell lung carcinoma: the role of gelsolin expression. Cancer, 1999. 85(1): p. 47-57.

69.Soon, L.L., et al., Overexpression of WISP-1 down-regulated motility and invasion of lung cancer cells through inhibition of Rac activation. J Biol Chem, 2003. 278(13): p. 11465-70.

70.Lee, T.K., et al., Significance of the Rac signaling pathway in HCC cell motility: implications for a new therapeutic target. Carcinogenesis, 2005. 26(3): p. 681-7.

71.Liu, J.F., et al., Functional Rac-1 and Nck signaling networks are required for FGF-2-induced DNA synthesis in MCF-7 cells. Oncogene, 1999. 18(47): p. 642533.

72.Mira, J.P., et al., Endogenous, hyperactive Rac3 controls proliferation of breast cancer cells by a p21-activated kinase-dependent pathway. Proc Natl Acad Sci U S A, 2000. 97(1): p. 185-9.

73.Keely, P.J., et al., Cdc42 and Rac1 induce integrin-mediated cell motility and invasiveness through PI(3)K. Nature, 1997. 390(6660): p. 632-6.

74.Scoles, D.R., et al., The neurofibromatosis 2 tumor suppressor protein interacts with hepatocyte growth factor-regulated tyrosine kinase substrate. Hum Mol Genet, 2000. 9(11): p. 1567-74.

75.Komada, M., et al., Hrs, a tyrosine kinase substrate with a conserved double zinc finger domain, is localized to the cytoplasmic surface of early endosomes. J Biol Chem, 1997. 272(33): p. 20538-44.

76.Simonsen, A., et al., EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature, 1998. 394(6692): p. 494-8.

77.Shih, S.C., et al., Epsins and Vps27p/Hrs contain ubiquitin-binding domains that function in receptor endocytosis. Nat Cell Biol, 2002. 4(5): p. 389-93.

78.Raiborg, C. and H. Stenmark, Hrs and endocytic sorting of ubiquitinated membrane proteins. Cell Struct Funct, 2002. 27(6): p. 403-8.

79.Lloyd, T.E., et al., Hrs regulates endosome membrane invagination and tyrosine kinase receptor signaling in Drosophila. Cell, 2002. 108(2): p. 261-9.

80.Asao, H., et al., Hrs is associated with STAM, a signal-transducing adaptor molecule. Its suppressive effect on cytokine-induced cell growth. J Biol Chem, 1997. 272(52): p. 32785-91.

81.Takeshita, T., et al., STAM, signal transducing adaptor molecule, is associated with Janus kinases and involved in signaling for cell growth and c-myc induction.

Immunity, 1997. 6(4): p. 449-57.

82.Scoles, D.R., et al., Neurofibromatosis 2 (NF2) tumor suppressor schwannomin and its interacting protein HRS regulate STAT signaling. Hum Mol Genet, 2002.

11(25): p. 3179-89.

119

83.López-Lago, M.A., et al., Loss of the tumor suppressor gene NF2, encoding merlin, constitutively activates integrin-dependent mTORC1 signaling. Mol Cell Biol., 2009. 29(15): p. 4235-49.

84.James, M.F., et al., NF2/merlin is a novel negative regulator of mTOR complex 1, and activation of mTORC1 is associated with meningioma and schwannoma growth. Mol Cell Biol, 2009. 29(15): p. 4250-61.

85.Li, W., et al., Merlin/NF2 suppresses tumorigenesis by inhibiting the E3 ubiquitin ligase CRL4(DCAF1) in the nucleus. Cell, 2010 Feb 19. 140(4): p. 477-90.

86.Lallemand, D., A.L. Saint-Amaux, and M. Giovannini, Tumor-suppression functions of merlin are independent of its role as an organizer of the actin cytoskeleton in Schwann cells. J Cell Sci, 2009 Nov 15. 122(Pt 22): p. 4141-9.

87.Ammoun, S., et al., Dissecting and targeting the growth factor-dependent and growth factor-independent extracellular signal-regulated kinase pathway in human schwannoma. Cancer Res. 68(13): p. 5236-45.

88.Ammoun, S., et al., Nilotinib alone or in combination with selumetinib is a drug candidate for neurofibromatosis type 2. Neuro Oncol, 2011. 13(7): p. 759-66.

89.Ahmad, Z.K., et al., ErbB expression, activation, and inhibition with lapatinib and tyrphostin (AG825) in human vestibular schwannomas. Otol Neurotol, 2011.

32(5): p. 841-7.

90.Giovannini, M., et al., mTORC1 inhibition delays growth of neurofibromatosis type 2 schwannoma. Neuro Oncol, 2014. 16(4): p. 493-504.

91.Brooks, C.L. and W. Gu, p53 regulation by ubiquitin. FEBS Lett, 2011. 585(18): p. 2803-9.

92.John, J., et al., Kinetics of interaction of nucleotides with nucleotide-free H-ras p21. Biochemistry, 1990. 29(25): p. 6058-65.

93.Radu, M., et al., PAK signalling during the development and progression of cancer. Nat Rev Cancer, 2014. 14(1): p. 13-25.

94.Bradshaw-Pierce, E.L., et al., Tumor P-Glycoprotein Correlates with Efficacy of PF-3758309 in in vitro and in vivo Models of Colorectal Cancer. Front Pharmacol, 2013. 4:22.

95.Vander Heiden, M.G., L.C. Cantley, and C.B. Thompson, Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 2009.

324(5930): p. 1029-33.

96.WARBURG, O., On respiratory impairment in cancer cells. Science, 1956.

124(3215): p. 269-70.

97.Robey, I.F., et al., Regulation of the Warburg effect in early-passage breast cancer cells. Neoplasia, 2008. 10(8): p. 745-56.

98.Zhao, Y., E.B. Butler, and M. Tan, Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis, 2013. 4: p. e532.

99.Pandey, P.R., et al., Anti-cancer drugs targeting fatty acid synthase (FAS).

Recent Pat Anticancer Drug Discov, 2012. 7(2): p. 185-97.

100.Wise, D.R. and C.B. Thompson, Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci, 2010. 35(8): p. 427-33.

120

101.Rossignol, R., et al., Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res, 2004. 64(3): p. 985-93.

102.Jordan, V.C. and A.M. Brodie, Development and evolution of therapies targeted to the estrogen receptor for the treatment and prevention of breast cancer.

Steroids, 2007. 72(1): p. 7-25.

103.Subbaramaiah, K., et al., EP2 and EP4 receptors regulate aromatase expression in human adipocytes and breast cancer cells. Evidence of a BRCA1 and p300 exchange. J Biol Chem, 2008. 283(6): p. 3433-44.

104.Vecchione, L., et al., Novel investigational drugs for gastric cancer. Expert Opin Investig Drugs, 2009 18(7): p. 945-55.

105.Santin, A.D., et al., Trastuzumab treatment in patients with advanced or recurrent endometrial carcinoma overexpressing HER2/neu. Int J Gynaecol Obstet, 2008. 102(2): p. 128-31.

106.Messersmith, W.A. and D.J. Ahnen, Targeting EGFR in colorectal cancer. N Engl J Med, 2008. 359(17): p. 1834-6.

107.Salloway, S., et al., Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer's disease. N Engl J Med, 2014. 370(4): p. 322-33.

108.Vermorken, J.B., et al., Overview of the efficacy of cetuximab in recurrent and/or metastatic squamous cell carcinoma of the head and neck in patients who previously failed platinum-based therapies. Cancer J, 2008. 112(12): p. 2710-9.

109.Maloney, D.G., et al., IDEC-C2B8: results of a phase I multiple-dose trial in patients with relapsed non-Hodgkin's lymphoma. J Clin Oncol, 1997. 15(10): p. 3266-74.

110.Zhao, Y., et al., Overcoming trastuzumab resistance in breast cancer by targeting dysregulated glucose metabolism. Cancer Res, 2011. 71(13): p. 4585-97.

111.Zhou, M., et al., Warburg effect in chemosensitivity: targeting lactate dehydrogenase-A re-sensitizes taxol-resistant cancer cells to taxol. Mol Cancer, 2010. 9:33.

112.Wang, J.B., et al., Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell, 2010. 18(3): p. 207-19.

113.Conzen, S.D. and C.N. Cole, The three transforming regions of SV40 T antigen are required for immortalization of primary mouse embryo fibroblasts.

Oncogene., 1995 11(11): p. 2295-302.

114.Müller, C.C., et al., Quantitative genotyping of mouse brain-specific PEX13 gene disruption by real-time PCR. Journal of Neuroscience Methods, 2009. 181(1): p. 73-81.

115.Giovannini, M., et al., Conditional biallelic Nf2 mutation in the mouse promotes manifestations of human neurofibromatosis type 2. Genes Dev, 2000. 14(13): p. 1617-1630.

116.Gilibili, R.R., et al., Development and validation of a highly sensitive LC-MS/MS method for simultaneous quantitation of acetyl-CoA and malonyl-CoA in animal tissues. Biomed Chromatogr, 2011. 25(12): p. 1352-9.

121

117.Hodgson, L., F. Shen, and K. Hahn, Biosensors for Characterizing the Dynamics of Rho Family GTPases in Living Cells, in Current Protocols in Cell Biology. 2010, John Wiley & Sons, Inc. p. 14.11.1-14.11.26.

118.Conzen, S.D. and C.N. Cole, The three transforming regions of SV40 T antigen are required for immortalization of primary mouse embryo fibroblasts.

Oncogene, 1995. 11(11): p. 2295-302.

119.Bertrand, R., et al., Induction of a common pathway of apoptosis by staurosporine. Exp Cell Res, 1994. 211(2): p. 314-21.

120.Berghmans, S., et al., tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. Proc Natl Acad Sci U S A, 2005. 102(2): p. 407-12.

121.McClatchey, A.I., et al., Mice heterozygous for a mutation at the Nf2 tumor suppressor locus develop a range of highly metastatic tumors. Genes Dev, 1998.

12(8): p. 1121-33.

122.Somanath, P.R., et al., The role of PAK-1 in activation of MAP kinase cascade and oncogenic transformation by Akt. Oncogene, 2009. 28(25): p. 2365-9.

123.Chappell, W.H., et al., Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health.

Oncotarget, 2011. 2(3): p. 135-64.

124.Kissil, J.L., et al., Merlin, the product of the Nf2 tumor suppressor gene, is an inhibitor of the p21-activated kinase, Pak1. Mol Cell, 2003. 12(4): p. 841-9.

125.!!! INVALID CITATION !!!

126.Mather, J., Animal Cell Culture Methods, in Methods in Cell Biology, J.P. Mather and D. Barnes, Editors. 1998, Elsevier.

127.Prados, M.D., Holland-Frei Cancer Medicine. 5 ed. 2000: BC Decker.

128.Ronnett, G.V., et al., Fatty acid metabolism as a target for obesity treatment.

Physiol Behav, 2005 May 19. 85(1): p. 25-35.

129.Loftus, T.M., et al., Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science, 2000. 288(5475): p. 2379-81.

130.Shiragami, R., et al., Enhanced antitumor activity of cerulenin combined with oxaliplatin in human colon cancer cells. Int J Oncol, 2013. 43(2): p. 431-8.

131.Menendez, J.A., et al., Pharmacological inhibition of fatty acid synthase (FAS): a novel therapeutic approach for breast cancer chemoprevention through its ability to suppress Her-2/neu (erbB-2) oncogene-induced malignant transformation.

Mol Carcinog., 2004. 41(3): p. 164-78.

132.Swinnen, J.V., et al., Androgens, lipogenesis and prostate cancer. J Steroid Biochem Mol Biol., 2004. 92(4): p. 273-9.

133.Sumi, S., et al., Lovastatin inhibits pancreatic cancer growth regardless of RAS mutation. Pancreas, 1994. 9(5): p. 657-61.

134.Jones, K.D., et al., Lovastatin induces growth inhibition and apoptosis in human malignant glioma cells. Biochem Biophys Res Commun, 1994. 205(3): p. 1681-7.

135.Marcelli, M., et al., Caspase-7 is activated during lovastatin-induced apoptosis of the prostate cancer cell line LNCaP. Cancer Res, 1998. 58(1): p. 76-83.

122

136.Seeger, H., D. Wallwiener, and A.O. Mueck, Statins can inhibit proliferation of human breast cancer cells in vitro. Exp Clin Endocrinol Diabetes, 2003. 111(1): p. 47-8.

137.Kou, R., J. Sartoretto, and T. Michel, Regulation of Rac1 by Simvastatin in Endothelial Cells. JBC, 2009. 284(22): p. 14734–14743.

138.Stofega, M.R., et al., Constitutive p21-activated Kinase (PAK) Activation in Breast Cancer Cells as a Result of Mislocalization of PAK to Focal Adhesions.

Mol Biol Cell, 2004. 15(6): p. 2965-2977.

139.Simon, A.R., et al., Regulation of STAT3 by direct binding to the Rac1 GTPase.

Science, 2000. 290: p. 144-147.

Соседние файлы в папке диссертации