Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
36
Добавлен:
26.03.2023
Размер:
53.47 Mб
Скачать

Chemical Reviews

pubs.acs.org/CR

Review

(44)Li, Y.; Song, L.; Wang, B.; He, J.; Li, Y.; Deng, Z.; Mao, C.

Universal pH-Responsive and Metal-Ion-Free Self-Assembly of DNA Nanostructures. Angew. Chem., Int. Ed. 2018, 57, 68926895.

(45)Ackermann, D.; Schmidt, T. L.; Hannam, J. S.; Purohit, C. S.;

Heckel, A.; Famulok, M. A Double-Stranded DNA Rotaxane. Nat. Nanotechnol. 2010, 5, 436442.

(46)List, J.; Falgenhauer, E.; Kopperger, E.; Pardatscher, G.; Simmel, F. C. Long-Range Movement of Large Mechanically Interlocked DNA Nanostructures. Nat. Commun. 2016, 7, 12414.

(47)Afshan, N.; Ali, M.; Wang, M.; Baig, M.; Xiao, S. J. DNA

Nanotubes Assembled from Tensegrity Triangle Tiles with Circular DNA Scaffolds. Nanoscale 2017, 9, 1718117185.

(48)Peters, J. P.; Maher, L. J. DNA Curvature and Flexibility in Vitro and in Vivo. Q. Rev. Biophys. 2010, 43, 2363.

(49)Savelyev, A.; Materese, C. K.; Papoian, G. A. Is DNAs Rigidity

Dominated by Electrostatic or Nonelectrostatic Interactions? J. Am. Chem. Soc. 2011, 133, 1929019293.

(50)Hagerman, P. J. Flexibility of DNA. Annu. Rev. Biophys. Biophys. Chem. 1988, 17, 265286.

(51)Aldaye, F. A.; Lo, P. K.; Karam, P.; McLaughlin, C. K.; Cosa, G.;

Sleiman, H. F. Modular Construction of DNA Nanotubes of Tunable Geometry and Singleor Double-Stranded Character. Nat. Nanotechnol. 2009, 4, 349352.

(52)Zheng, H.; Xiao, M.; Yan, Q.; Ma, Y.; Xiao, S. J. Small Circular

DNA Molecules Act as Rigid Motifs to Build DNA Nanotubes. J. Am. Chem. Soc. 2014, 136, 1019410197.

(53)Campolongo, M. J.; Tan, S. J.; Xu, J.; Luo, D. DNA

Nanomedicine: Engineering DNA as a Polymer for Therapeutic and Diagnostic Applications. Adv. Drug Delivery Rev. 2010, 62, 606616.

(54)Lilley, D. M. J.; Clegg, R. M. The Structure of Branched DNA Species. Q. Rev. Biophys. 1993, 26, 131175.

(55)Seeman, N. C. Nucleic Acid Nanostructures and Topology.

Angew. Chem., Int. Ed. 1998, 37, 32203238.

(56)Yang, D.; Campolongo, M. J.; Nhi Tran, T. N.; Ruiz, R. C.; Kahn,

J. S.; Luo, D. Novel DNA Materials and Their Applications. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2010, 2, 648669.

(57)Li, Y.; Tseng, Y. D.; Kwon, S. Y.; DEspaux, L.; Bunch, J. S.;

McEuen, P. L.; Luo, D. Controlled Assembly of Dendrimer-Like DNA.

Nat. Mater. 2004, 3, 3842.

(58)He, Y.; Chen, Y.; Liu, H. P.; Ribbe, A. E.; Mao, C. D. Self-

Assembly of Hexagonal DNA Two-Dimensional (2D) Arrays. J. Am. Chem. Soc. 2005, 127, 1220212203.

(59)Um, S. H.; Lee, J. B.; Park, N.; Kwon, S. Y.; Umbach, C. C.; Luo,

D. Enzyme-Catalysed Assembly of DNA Hydrogel. Nat. Mater. 2006, 5, 797801.

(60)He, Y.; Ye, T.; Su, M.; Zhang, C.; Ribbe, A. E.; Jiang, W.; Mao, C.

Hierarchical Self-Assembly of DNA into Symmetric Supramolecular Polyhedra. Nature 2008, 452, 198201.

(61)Cheng, E.; Xing, Y.; Chen, P.; Yang, Y.; Sun, Y.; Zhou, D.; Xu, L.;

Fan, Q.; Liu, D. A pH-Triggered, Fast-Responding DNA Hydrogel.

Angew. Chem., Int. Ed. 2009, 48, 76607663.

(62)Zheng, J.; Birktoft, J. J.; Chen, Y.; Wang, T.; Sha, R.; Constantinou, P. E.; Ginell, S. L.; Mao, C.; Seeman, N. C. From

Molecular to Macroscopic via the Rational Design of a Self-Assembled 3D DNA Crystal. Nature 2009, 461, 7477.

(63)Bhatia, D.; Mehtab, S.; Krishnan, R.; Indi, S. S.; Basu, A.;

Krishnan, Y. Icosahedral DNA Nanocapsules by Modular Assembly.

Angew. Chem., Int. Ed. 2009, 48, 41344137.

(64)Mohri, K.; Nishikawa, M.; Takahashi, N.; Shiomi, T.; Matsuoka, N.; Ogawa, K.; Endo, M.; Hidaka, K.; Sugiyama, H.; Takahashi, Y.; et al. Design and Development of Nanosized DNA Assemblies in Polypod-

Like Structures as Efficient Vehicles for Immunostimulatory CpG Motifs to Immune Cells. ACS Nano 2012, 6, 59315940.

(65)Iinuma, R.; Ke, Y. G.; Jungmann, R.; Schlichthaerle, T.;

Woehrstein, J. B.; Yin, P. Polyhedra Self-Assembled from DNA Tripods and Characterized with 3D DNA-PAINT. Science 2014, 344, 6569. (66) Li, J.; Zheng, C.; Cansiz, S.; Wu, C.; Xu, J.; Cui, C.; Liu, Y.; Hou, W.; Wang, Y.; Zhang, L.; et al. Self-Assembly of DNA Nanohydrogels

with Controllable Size and Stimuli-Responsive Property for Targeted Gene Regulation Therapy. J. Am. Chem. Soc. 2015, 137, 14121415.

(67)Zhang, F.; Jiang, S.; Wu, S.; Li, Y.; Mao, C.; Liu, Y.; Yan, H.

Complex Wireframe DNA Origami Nanostructures with Multi-Arm Junction Vertices. Nat. Nanotechnol. 2015, 10, 779784.

(68)Hong, F.; Jiang, S.; Wang, T.; Liu, Y.; Yan, H. 3D Framework

DNA Origami with Layered Crossovers. Angew. Chem., Int. Ed. 2016, 55, 1283212835.

(69)Hao, Y.; Kristiansen, M.; Sha, R.; Birktoft, J. J.; Hernandez, C.;

Mao, C.; Seeman, N. C. A Device That Operates within a SelfAssembled 3D DNA Crystal. Nat. Chem. 2017, 9, 824827.

(70)Agarwal, N. P.; Matthies, M.; Joffroy, B.; Schmidt, T. L. Structural

Transformation of Wireframe DNA Origami via DNA Polymerase Assisted Gap-Filling. ACS Nano 2018, 12, 25462553.

(71)Kwon, P. S.; Ren, S.; Kwon, S. J.; Kizer, M. E.; Kuo, L.; Xie, M.; Zhu, D.; Zhou, F.; Zhang, F.; Kim, D.; et al. Designer DNA Architecture

Offers Precise and Multivalent Spatial Pattern-Recognition for Viral Sensing and Inhibition. Nat. Chem. 2020, 12, 2635.

(72)Wang, W.; Chen, S.; An, B.; Huang, K.; Bai, T.; Xu, M.; Bellot, G.; Ke, Y.; Xiang, Y.; Wei, B. Complex Wireframe DNA Nanostructures from Simple Building Blocks. Nat. Commun. 2019, 10, 1067.

(73)Li, Y.; Cu, Y. T.; Luo, D. Multiplexed Detection of Pathogen

DNA with DNA-Based Fluorescence Nanobarcodes. Nat. Biotechnol. 2005, 23, 885889.

(74)Lee, J. B.; Roh, Y. H.; Um, S. H.; Funabashi, H.; Cheng, W.; Cha, J. J.; Kiatwuthinon, P.; Muller, D. A.; Luo, D. Multifunctional

Nanoarchitectures from DNA-Based ABC Monomers. Nat. Nanotechnol. 2009, 4, 430436.

(75)Tran, T. N.; Cui, J.; Hartman, M. R.; Peng, S.; Funabashi, H.; Duan, F.; Yang, D.; March, J. C.; Lis, J. T.; Cui, H.; et al. A Universal

DNA-Based Protein Detection System. J. Am. Chem. Soc. 2013, 135, 1400814011.

(76)Ma, X.; Yang, Z.; Wang, Y.; Zhang, G.; Shao, Y.; Jia, H.; Cao, T.;

Wang, R.; Liu, D. Remote Controlling DNA Hydrogel by Magnetic Field. ACS Appl. Mater. Interfaces 2017, 9, 19952000.

(77)Li, Y.; Liu, Z.; Yu, G.; Jiang, W.; Mao, C. Self-Assembly of

Molecule-Like Nanoparticle Clusters Directed by DNA Nanocages. J. Am. Chem. Soc. 2015, 137, 43204323.

(78)Tian, Y.; Zhang, Y.; Wang, T.; Xin, H. L.; Li, H.; Gang, O. Lattice

Engineering Through Nanoparticle-DNA Frameworks. Nat. Mater. 2016, 15, 654661.

(79)Zhang, L.; Jean, S. R.; Ahmed, S.; Aldridge, P. M.; Li, X.; Fan, F.; Sargent, E. H.; Kelley, S. O. Multifunctional Quantum Dot DNA Hydrogels. Nat. Commun. 2017, 8, 381.

(80)Yang, L.; Yao, C.; Li, F.; Dong, Y.; Zhang, Z.; Yang, D. Synthesis of Branched DNA Scaffolded Super-Nanoclusters with Enhanced Antibacterial Performance. Small 2018, 14, 1800185.

(81)Brady, R. A.; Brooks, N. J.; Fodera, V.; Cicuta, P.; Di Michele, L. Amphiphilic-DNA Platform for the Design of Crystalline Frameworks

with Programmable Structure and Functionality. J. Am. Chem. Soc. 2018, 140, 1538415392.

(82)Vargas-Baca, I.; Mitra, D.; Zulyniak, H. J.; Banerjee, J.; Sleiman,

H. F. Solid-Phase Synthesis of Transition Metal Linked, Branched Oligonucleotides. Angew. Chem., Int. Ed. 2001, 40, 46294632.

(83)Eckardt, L. H.; Naumann, K.; Pankau, W. M.; Rein, M.; Schweitzer, M.; Windhab, N.; von Kiedrowski, G. DNA Nano-

technology: Chemical Copying of Connectivity. Nature 2002, 420, 287286.

(84)Endo, M.; Majima, T. Control of a Double Helix DNA Assembly

by Use of Cross-Linked Oligonucleotides. J. Am. Chem. Soc. 2003, 125, 1365413655.

(85)Yang, H.; McLaughlin, C. K.; Aldaye, F. A.; Hamblin, G. D.; Rys,

A. Z.; Rouiller, I.; Sleiman, H. F. Metal-Nucleic Acid Cages. Nat. Chem. 2009, 1, 390396.

(86)Lee, J. K.; Jung, Y. H.; Tok, J. B.; Bao, Z. Syntheses of Organic Molecule-DNA Hybrid Structures. ACS Nano 2011, 5, 20672074.

(87)Hartman, M. R.; Yang, D.; Tran, T. N.; Lee, K.; Kahn, J. S.; Kiatwuthinon, P.; Yancey, K. G.; Trotsenko, O.; Minko, S.; Luo, D. Thermostable Branched DNA Nanostructures as Modular Primers for

AY

https://dx.doi.org/10.1021/acs.chemrev.0c00294

 

Chem. Rev. XXXX, XXX, XXX−XXX

Chemical Reviews

pubs.acs.org/CR

Review

Polymerase Chain Reaction. Angew. Chem., Int. Ed. 2013, 52, 86998702.

(88)Finke, A.; Busskamp, H.; Manea, M.; Marx, A. Designer

Extracellular Matrix Based on DNA-Peptide Networks Generated by Polymerase Chain Reaction. Angew. Chem., Int. Ed. 2016, 55, 1013610140.

(89)Liu, J. B.; Wu, T. T.; Lu, X. H.; Wu, X. H.; Liu, S. L.; Zhao, S.; Xu, X. H.; Ding, B. Q. A Self-Assembled Platform Based on Branched DNA

for sgRNA/Cas9/Antisense Delivery. J. Am. Chem. Soc. 2019, 141, 1903219037.

(90)de Brabander-van den Berg, E. M. M.; Meijer, E. W.

Poly(propylene imine) Dendrimers: Large-Scale Synthesis by Hetereogeneously Catalyzed Hydrogenations. Angew. Chem., Int. Ed. Engl. 1993, 32, 13081311.

(91)Tomalia, D. A.; Naylor, A. M.; Goddard, W. A. Starburst Dendrimers-Molecular-Level Control of Size, Shape, Surface Chem-

istry, Topology, and Flexibility From Atoms to Macroscopic Matter.

Angew. Chem., Int. Ed. Engl. 1990, 29, 138175.

(92)Hawker, C. J.; Frechet, J. M. J. Preparation of Polymers with

Controlled Molecular Architecture. A New Convergent Approach to Dendritic Macromolecules. J. Am. Chem. Soc. 1990, 112, 76387647. (93) Ihre, H.; Hult, A.; Söderlind, E. Synthesis, Characterization, and 1H NMR Self-Diffusion Studies of Dendritic Aliphatic Polyesters Based on 2,2-Bis(hydroxymethyl)propionic Acid and 1,1,1-Tris- (hydroxyphenyl)ethane. J. Am. Chem. Soc. 1996, 118, 63886395.

(94)Freedman, K. O.; Lee, J.; Li, Y. G.; Luo, D.; Skobeleva, V. B.; Ke,

P. C. Diffusion of Single Star-Branched Dendrimer-Like DNA. J. Phys. Chem. B 2005, 109, 98399842.

(95)Du, Y.; Peng, P.; Li, T. Logic Circuit Controlled Multi-

Responsive Branched DNA Scaffolds. Chem. Commun. 2018, 54, 61326135.

(96)Peng, S. M.; Derrien, T. L.; Cui, J. H.; Xu, C. Y.; Luo, D. From Cells to DNA Materials. Mater. Mater. Today 2012, 15, 190194.

(97)Zhou, T.; Chen, P.; Niu, L.; Jin, J.; Liang, D. H.; Li, Z. B.; Yang, Z.

Q.; Liu, D. S. pH-Responsive Size-Tunable Self-Assembled DNA Dendrimers. Angew. Chem., Int. Ed. 2012, 51, 1127111274.

(98)Wang, D.; Hu, Y.; Liu, P.; Luo, D. Bioresponsive DNA

Hydrogels: Beyond the Conventional Stimuli Responsiveness. Acc. Chem. Res. 2017, 50, 733739.

(99)Winfree, E.; Liu, F. R.; Wenzler, L. A.; Seeman, N. C. Design and

Self-Assembly of Two-Dimensional DNA Crystals. Nature 1998, 394, 539544.

(100)Yan, H.; Zhang, X. P.; Shen, Z. Y.; Seeman, N. C. A Robust

DNA Mechanical Device Controlled by Hybridization Topology.

Nature 2002, 415, 6265.

(101)Liu, W. Y.; Zhong, H.; Wang, R. S.; Seeman, N. C. Crystalline

Two-Dimensional DNA-Origami Arrays. Angew. Chem., Int. Ed. 2011, 50, 264267.

(102)Chen, J. H.; Seeman, N. C. Synthesis from DNA of a Molecule with the Connectivity of a Cube. Nature 1991, 350, 631633.

(103)Fu, T. J.; Seeman, N. C. DNA Double-Crossover Molecules.

Biochemistry 1993, 32, 32113220.

(104)Le, J. D.; Pinto, Y.; Seeman, N. C.; Musier-Forsyth, K.; Taton,

T. A.; Kiehl, R. A. DNA-Templated Self-Assembly of Metallic Nanocomponent Arrays on a Surface. Nano Lett. 2004, 4, 23432347.

(105)Selmi, D. N.; Adamson, R. J.; Attrill, H.; Goddard, A. D.;

Gilbert, R. J. C.; Watts, A.; Turberfield, A. J. DNA-Templated Protein Arrays for Single-Molecule Imaging. Nano Lett. 2011, 11, 657660.

(106)Seeman, N. C. DNA Engineering and Its Application to Nanotechnology. Trends Biotechnol. 1999, 17, 437443.

(107)Seeman, N. C.; Kallenbach, N. R. DNA branched junctions.

Annu. Rev. Biophys. Biomol. Struct. 1994, 23, 5386.

(108)Seeman, N. C. Construction of Three-Dimensional Stick Figures from Branched DNA. DNA Cell Biol. 1991, 10, 475486.

(109)Gu, H.; Chao, J.; Xiao, S. J.; Seeman, N. C. A Proximity-Based

Programmable DNA Nanoscale Assembly Line. Nature 2010, 465, 202205.

(110)Keller, S.; Wang, J.; Chandra, M.; Berger, R.; Marx, A. DNA

Polymerase-Catalyzed DNA Network Growth. J. Am. Chem. Soc. 2008, 130, 1318813189.

(111)Rusling, D. A.; Arun Richard, C.; Ohayon, Y. P.; Tom, B.; Fox, K. R.; Ruojie, S.; Chengde, M.; Seeman, N. C. Functionalizing Designer

DNA Crystals with a Triple-Helical Veneer. Angew. Chem., Int. Ed. 2014, 53, 39793982.

(112)Sha, R. J.; Liu, F. R.; Millar, D. P.; Seeman, N. C. Atomic Force

Microscopy of Parallel DNA Branched Junction Arrays. Chem. Biol. 2000, 7, 743751.

(113)Seeman, N. C. An Overview of Structural DNA Nanotechnology. Mol. Biotechnol. 2007, 37, 246257.

(114)Park, S. H.; Yin, P.; Liu, Y.; Reif, J. H.; LaBean, T. H.; Yan, H.

Programmable DNA Self-Assemblies for Nanoscale Organization of Ligands and Proteins. Nano Lett. 2005, 5, 729733.

(115)Wang, X.; Seeman, N. C. Assembly and Characterization of 8-

Arm and 12-Arm DNA Branched Junctions. J. Am. Chem. Soc. 2007, 129, 81698176.

(116)Pascal, T. A.; Goddard, W. A., 3rd; Maiti, P. K.; Vaidehi, N. Role

of Specific Cations and Water Entropy on the Stability of Branched DNA Motif Structures. J. Phys. Chem. B 2012, 116, 1215912167.

(117)Chatterjee, S.; Lee, J. B.; Valappil, N. V.; Luo, D.; Menon, V. M.

Probing Y-Shaped DNA Structure with Time-Resolved FRET. Nanoscale 2012, 4, 15681571.

(118)Sabir, T.; Toulmin, A.; Ma, L.; Jones, A. C.; McGlynn, P.; Schroder, G. F.; Magennis, S. W. Branchpoint Expansion in a Fully

Complementary Three-Way DNA Junction. J. Am. Chem. Soc. 2012, 134, 62806285.

(119)Wang, Y. L.; Mueller, J. E.; Kemper, B.; Seeman, N. C. Assembly

and Characterization of 5-arm and 6-arm DNA Branched Junctions.

Biochemistry 1991, 30, 56675674.

(120)Biffi, S.; Cerbino, R.; Bomboi, F.; Paraboschi, E. M.; Asselta, R.; Sciortino, F.; Bellini, T. Phase Behavior and Critical Activated

Dynamics of Limited-Valence DNA Nanostars. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 1563315637.

(121)Fernandez-Castanon, J.; Bomboi, F.; Sciortino, F. Binding

Branched and Linear DNA Structures: From Isolated Clusters to Fully Bonded Gels. J. Chem. Phys. 2018, 148, 025103.

(122)Biffi, S.; Cerbino, R.; Nava, G.; Bomboi, F.; Sciortino, F.; Bellini,

T. Equilibrium Gels of Low-Valence DNA Nanostars: A Colloidal Model for Strong Glass Formers. Soft Matter 2015, 11, 31323138.

(123)Yang, X. P.; Wenzler, L. A.; Qi, J.; Li, X. J.; Seeman, N. C.

Ligation of DNA Triangles Containing Double Crossover Molecules. J. Am. Chem. Soc. 1998, 120, 97799786.

(124)Yan, H.; Park, S. H.; Finkelstein, G.; Reif, J. H.; LaBean, T. H.

DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires. Science 2003, 301, 18821884.

(125)Chandrasekaran, A. R.; Levchenko, O. DNA Nanocages. Chem. Mater. 2016, 28, 55695581.

(126)Zhang, C.; Wu, W.; Li, X.; Tian, C.; Qian, H.; Wang, G.; Jiang,

W.; Mao, C. Controlling the Chirality of DNA Nanocages. Angew. Chem., Int. Ed. 2012, 51, 79998002.

(127)Zhang, C.; Tian, C.; Li, X.; Qian, H.; Hao, C.; Jiang, W.; Mao, C.

Reversibly Switching the Surface Porosity of a DNA Tetrahedron. J. Am. Chem. Soc. 2012, 134, 1199812001.

(128)Wang, P.; Wu, S.; Tian, C.; Yu, G.; Jiang, W.; Wang, G.; Mao, C. Retrosynthetic Analysis-Guided Breaking Tile Symmetry for the

Assembly of Complex DNA Nanostructures. J. Am. Chem. Soc. 2016, 138, 1357913585.

(129)Zhao, J.; Chandrasekaran, A. R.; Li, Q.; Li, X.; Sha, R.; Seeman,

N. C.; Mao, C. Post-Assembly Stabilization of Rationally Designed DNA Crystals. Angew. Chem., Int. Ed. 2015, 54, 99369939.

(130)Yin, P.; Choi, H. M.; Calvert, C. R.; Pierce, N. A. Programming Biomolecular Self-Assembly Pathways. Nature 2008, 451, 318322.

(131)Feldkamp, U.; Niemeyer, C. M. Rational Engineering of Dynamic DNA Systems. Angew. Chem., Int. Ed. 2008, 47, 38713873.

(132)He, H.; Dai, J.; Meng, Y.; Duan, Z.; Zhou, C.; Zheng, B.; Du, J.; Guo, Y.; Xiao, D. Self-Assembly of DNA Nanoparticles Through

AZ

https://dx.doi.org/10.1021/acs.chemrev.0c00294

 

Chem. Rev. XXXX, XXX, XXX−XXX

Chemical Reviews

pubs.acs.org/CR

Review

Multiple Catalyzed Hairpin Assembly for Enzyme-Free Nucleic Acid Amplified Detection. Talanta 2018, 179, 641645.

(133)Dirks, R. M.; Pierce, N. A. Triggered Amplification by

Hybridization Chain Reaction. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 1527515278.

(134)Kotani, S.; Hughes, W. L. Multi-Arm Junctions for Dynamic DNA Nanotechnology. J. Am. Chem. Soc. 2017, 139, 63636368.

(135)Zhao, Y.; Chen, F.; Li, Q.; Wang, L.; Fan, C. Isothermal Amplification of Nucleic Acids. Chem. Rev. 2015, 115, 1249112545.

(136)Wang, F.; Lu, C. H.; Willner, I. From Cascaded Catalytic Nucleic Acids to Enzyme-DNA Nanostructures: Controlling Reac-

tivity, Sensing, Logic Operations, and Assembly of Complex Structures.

Chem. Rev. 2014, 114, 28812941.

(137)Chen, J.; Wen, J.; Yang, G.; Zhou, S. A Target-Induced Three-

Way G-Quadruplex Junction for 17Beta-Estradiol Monitoring with a Naked-Eye Readout. Chem. Commun. 2015, 51, 1237312376.

(138)Yurke, B.; Turberfield, A. J.; Mills, A. P.; Simmel, F. C.;

Neumann, J. L. A DNA-Fuelled Molecular Machine Made of DNA.

Nature 2000, 406, 605608.

(139)Chen, J.; Zhou, S.; Wen, J. Concatenated Logic Circuits Based on a Three-Way DNA Junction: A Keypad-Lock Security System with

Visible Readout and an Automatic Reset Function. Angew. Chem., Int. Ed. 2014, 54, 446450.

(140)Gorska, K.; Winssinger, N. Reactions Templated by Nucleic

Acids: More Ways to Translate Oligonucleotide-Based Instructions into Emerging Function. Angew. Chem., Int. Ed. 2013, 52, 68206843.

(141)Madsen, M.; Gothelf, K. V. Chemistries for DNA Nanotechnology. Chem. Rev. 2019, 119, 63846458.

(142)Feldkamp, U.; Niemeyer, C. M. Rational Design of DNA Nanoarchitectures. Angew. Chem., Int. Ed. 2006, 45, 18561876.

(143)Gothelf, K. V.; Thomsen, A.; Nielsen, M.; Clo, E.; Brown, R. S.

Modular DNA-Programmed Assembly of Linear and Branched Conjugated Nanostructures. J. Am. Chem. Soc. 2004, 126, 10441046.

(144)Endo, M.; Uegaki, S.; Majima, T. Programmable DNA

Translation System Using Cross-Linked DNA Mediators. Chem. Commun. 2005, 31533155.

(145)Endo, M.; Majima, T. Thermodynamic Properties of Branched

DNA Complexes with Full-Matched and Mismatched DNA Strands.

Chem. Commun. 2006, 23292331.

(146)McLaughlin, C. K.; Hamblin, G. D.; Sleiman, H. F. Supramolecular DNA Assembly. Chem. Soc. Rev. 2011, 40, 56475656.

(147)Choi, J. S.; Kang, C. W.; Jung, K.; Yang, J. W.; Kim, Y. G.; Han,

H. Y. Synthesis of DNA Triangles with Vertexes of Bis(terpyridine)- iron(II) Complexes. J. Am. Chem. Soc. 2004, 126, 86068607.

(148)Mitra, D.; Di Cesare, N.; Sleiman, H. F. Self-Assembly of Cyclic

Metal-DNA Nanostructures Using Ruthenium Tris(bipyridine)- Branched Oligonucleotides. Angew. Chem., Int. Ed. 2004, 43, 58045808.

(149)Aldaye, F. A.; Sleiman, H. F. Guest-Mediated Access to a Single

DNA Nanostructure from a Library of Multiple Assemblies. J. Am. Chem. Soc. 2007, 129, 1007010071.

(150)Stewart, K. M.; Rojo, J.; McLaughlin, L. W. Ru(II) Tris(bipyridyl) Complexes with Six Oligonucleotide Arms as

Precursors for the Generation of Supramolecular Assemblies. Angew. Chem., Int. Ed. 2004, 43, 58085811.

(151)Stewart, K. M.; McLaughlin, L. W. Four-Arm Oligonucleotide Ni(II)-Cyclam-Centered Complexes as Precursors for the Generation

of Supramolecular Periodic Assemblies. J. Am. Chem. Soc. 2004, 126, 20502057.

(152)Irvoas, J.; Noirot, A.; Chouini-Lalanne, N.; Reynes, O.; Sartor, V. DNA Three-Way JunctionRuthenium Complex Assemblies. New J. Chem. 2013, 37, 23242329.

(153)Endo, M.; Shiroyama, T.; Fujitsuka, M.; Majima, T. Four-Way- Branched DNA-Porphyrin Conjugates for Construction of Four

Double-Helix-DNA Assembled Structures. J. Org. Chem. 2005, 70, 74687472.

(154)Cerasino, L.; Hannon, M. J.; Sletten, E. DNA Three-Way

Junction with a Dinuclear Iron(II) Supramolecular Helicate at the Center: A NMR Structural Study. Inorg. Chem. 2007, 46, 62456251.

(155)Yang, H.; Sleiman, H. F. Templated Synthesis of Highly Stable,

Electroactive, and Dynamic Metal-DNA Branched Junctions. Angew. Chem., Int. Ed. 2008, 47, 24432446.

(156)Yang, H.; Lo, P. K.; McLaughlin, C. K.; Hamblin, G. D.; Aldaye,

F. A.; Sleiman, H. F. Self-Assembly of Metal-DNA Triangles and DNA Nanotubes with Synthetic Junctions. Methods Mol. Biol. 2011, 749, 3347.

(157)Duprey, J. L.; Takezawa, Y.; Shionoya, M. Metal-Locked DNA Three-Way Junction. Angew. Chem., Int. Ed. 2013, 52, 12121216.

(158)Stubinitzky, C.; Bijeljanin, A.; Antusch, L.; Ebeling, D.; Holscher, H.; Wagenknecht, H. A. Bifunctional DNA Architectonics:

Three-Way Junctions with Sticky Perylene Bisimide Caps and a Central Metal Lock. Chem. - Eur. J. 2014, 20, 1200912014.

(159)Endo, M.; Majima, T. Structural Arrangement of Two DNA

Double Helices Using Cross-Linked Oligonucleotide Connectors.

Chem. Commun. 2004, 13081309.

(160)Scheffler, M.; Dorenbeck, A.; Jordan, S.; Wustefeld, M.; von Kiedrowski, G. Self-Assembly of Trisoligonucleotidyls: The Case for

Nano-Acetylene and Nano-Cyclobutadiene. Angew. Chem., Int. Ed. 1999, 38, 33113315.

(161)Schwenger, A.; Gerlach, C.; Griesser, H.; Richert, C. Synthesis

of Eight-Arm, Branched Oligonucleotide Hybrids and Studies on the Limits of DNA-Driven Assembly. J. Org. Chem. 2014, 79, 1155811566.

(162)Shchepinov, M. S.; Mir, K. U.; Elder, J. K.; Frank-Kamenetskii,

M. D.; Southern, E. M. Oligonucleotide Dendrimers: Stable NanoStructures. Nucleic Acids Res. 1999, 27, 30353041.

(163)Utagawa, E.; Ohkubo, A.; Sekine, M.; Seio, K. Synthesis of Branched Oligonucleotides with Three Different Sequences Using an

Oxidatively Removable Tritylthio Group. J. Org. Chem. 2007, 72, 82598266.

(164)Meng, M.; Ahlborn, C.; Bauer, M.; Plietzsch, O.; Soomro, S. A.; Singh, A.; Muller, T.; Wenzel, W.; Brase, S.; Richert, C. Two Base Pair

Duplexes Suffice to Build a Novel Material. ChemBioChem 2009, 10, 13351339.

(165)Singh, A.; Tolev, M.; Meng, M.; Klenin, K.; Plietzsch, O.; Schilling, C. I.; Muller, T.; Nieger, M.; Brase, S.; Wenzel, W.; et al.

Branched DNA That Forms a Solid at 95 degrees C. Angew. Chem., Int. Ed. 2011, 50, 32273231.

(166)Wenz, N. L.; Piasecka, S.; Kalinowski, M.; Schneider, A.; Richert, C.; Wege, C. Building Expanded Structures from Tetrahedral

DNA Branching Elements, RNA and TMV Protein. Nanoscale 2018, 10, 64966510.

(167)Hong, B. J.; Cho, V. Y.; Bleher, R.; Schatz, G. C.; Nguyen, S. T. Enhancing DNA-Mediated Assemblies of Supramolecular Cage Dimers

through Tuning Core Flexibility and DNA LengthA Combined Experimental-Modeling Study. J. Am. Chem. Soc. 2015, 137, 1338113388.

(168)Cho, V. Y.; Hong, B. J.; Kohlstedt, K. L.; Schatz, G. C.; Nguyen, S. T. The Competing Effects of Core Rigidity and Linker Flexibility in the Nanoassembly of Trivalent Small Molecule-DNA Hybrids

(SMDH3s)-A Synergistic Experimental-Modeling Study. Nanoscale 2017, 9, 1265212663.

(169)Hong, B. J.; Eryazici, I.; Bleher, R.; Thaner, R. V.; Mirkin, C. A.; Nguyen, S. T. Directed Assembly of Nucleic Acid-Based Polymeric

Nanoparticles from Molecular Tetravalent Cores. J. Am. Chem. Soc. 2015, 137, 81848191.

(170)McKee, M. L.; Milnes, P. J.; Bath, J.; Stulz, E.; OReilly, R. K.;

Turberfield, A. J. Programmable One-Pot Multistep Organic Synthesis Using DNA Junctions. J. Am. Chem. Soc. 2012, 134, 14461449.

(171)Zimmermann, J.; Cebulla, M. P.; Monninghoff, S.; von Kiedrowski, G. Self-Assembly of a DNA Dodecahedron From 20

Trisoligonucleotides with C(3h) Linkers. Angew. Chem., Int. Ed. 2008, 47, 36263630.

(172)Lee, J. K.; Jung, Y. H.; Stoltenberg, R. M.; Tok, J. B. H.; Bao, Z. N. Synthesis of DNA-Organic Molecule-DNA Triblock Oligomers

Using the Amide Coupling Reaction and Their Enzymatic Amplification. J. Am. Chem. Soc. 2008, 130, 1285412855.

BA

https://dx.doi.org/10.1021/acs.chemrev.0c00294

 

Chem. Rev. XXXX, XXX, XXX−XXX

Chemical Reviews

pubs.acs.org/CR

Review

(173)Kumari, R.; Singh, S.; Monisha, M.; Bhowmick, S.; Roy, A.; Das, N.; Das, P. Hierarchical Coassembly of DNA-Triptycene Hybrid

Molecular Building Blocks and Zinc Protoporphyrin IX. Beilstein J. Nanotechnol. 2016, 7, 697707.

(174)Okochi, K. D.; Monfregola, L.; Dickerson, S. M.; McCaffrey, R.; Domaille, D. W.; Yu, C.; Hafenstine, G. R.; Jin, Y.; Cha, J. N.; Kuchta, R.

D.; et al. Synthesis of Small-Molecule/DNA Hybrids through On-Bead Amide-Coupling Approach. J. Org. Chem. 2017, 82, 1080310811.

(175)El-Mahdy, A. F.; Shibata, T.; Kabashima, T.; Kai, M. Dendrimer-Like Polymeric DNAs as Chemiluminescence Probes for

Amplified Detection of Telomere DNA on a Solid-Phase Membrane.

Chem. Commun. 2014, 50, 859861.

(176)Endo, M.; Seeman, N. C.; Majima, T. DNA Tube Structures

Controlled by a Four-Way-Branched DNA Connector. Angew. Chem., Int. Ed. 2005, 44, 60746077.

(177)Valsangkar, V.; Chandrasekaran, A. R.; Wang, R.; Haruehanroengra, P.; Levchenko, O.; Halvorsen, K.; Sheng, J. Click-

Based Functionalization of a 2-O-Propargyl-Modified Branched DNA Nanostructure. J. Mater. Chem. B 2017, 5, 20742077.

(178)Pujari, S. S.; Seela, F. Cross-Linked DNA: Propargylated Ribonucleosides as ClickLigation Sites for Bifunctional Azides. J. Org. Chem. 2012, 77, 44604465.

(179)Xiong, H.; Leonard, P.; Seela, F. Construction and Assembly of Branched Y-shaped DNA: ClickChemistry Performed on

Dendronized 8-Aza-7-Deazaguanine Oligonucleotides. Bioconjugate Chem. 2012, 23, 856870.

(180)Lundberg, E. P.; Plesa, C.; Wilhelmsson, L. M.; Lincoln, P.; Brown, T.; Norden, B. Nanofabrication Yields. Hybridization and

Click-Fixation of Polycyclic DNA Nanoassemblies. ACS Nano 2011, 5, 75657575.

(181)Paredes, E.; Zhang, X.; Ghodke, H.; Yadavalli, V. K.; Das, S. R.

Backbone-Branched DNA Building Blocks for Facile Angular Control in Nanostructures. ACS Nano 2013, 7, 39533961.

(182)Brown, R. S.; Nielsen, M.; Gothelf, K. V. Self-Assembly of Aluminium-Salen Coupled Nanostructures from Encoded Modules

with Cleavable Disulfide DNA-Linkers. Chem. Commun. 2004, 13, 14641465.

(183)Nielsen, M.; Thomsen, A. H.; Clo, E.; Kirpekar, F.; Gothelf, K. V. Synthesis of Linear and Tripoidal Oligo(Phenylene Ethynylene)-

Based Building Blocks for Application in Modular DNA-Programmed Assembly. J. Org. Chem. 2004, 69, 22402250.

(184)Ravnsbaek, J. B.; Jacobsen, M. F.; Rosen, C. B.; Voigt, N. V.; Gothelf, K. V. DNA-Programmed Glaser-Eglinton Reactions for the

Synthesis of Conjugated Molecular Wires. Angew. Chem., Int. Ed. 2011, 50, 1085110854.

(185)Yu, H.; Alexander, D. T. L.; Aschauer, U.; Haner, R. Synthesis of

Responsive Two-Dimensional Polymers via Self-Assembled DNA Networks. Angew. Chem., Int. Ed. 2017, 56, 50405044.

(186)Kuang, H.; Ma, W.; Xu, L. G.; Wang, L. B.; Xu, C. L. Nanoscale Superstructures Assembled by Polymerase Chain Reaction (PCR):

Programmable Construction, Structural Diversity, and Emerging Applications. Acc. Chem. Res. 2013, 46, 23412354.

(187)Lee, J. K.; Jung, Y. H.; Stoltenberg, R. M.; Tok, J. B.; Bao, Z. Synthesis of DNA-Organic Molecule-DNA Triblock Oligomers Using

the Amide Coupling Reaction and Their Enzymatic Amplification. J. Am. Chem. Soc. 2008, 130, 1285412855.

(188)Rajendran, A.; Endo, M.; Katsuda, Y.; Hidaka, K.; Sugiyama, H. Photo-Cross-Linking-Assisted Thermal Stability of DNA Origami

Structures and Its Application for Higher-Temperature Self-Assembly.

J. Am. Chem. Soc. 2011, 133, 1448814491.

(189)Trinh, T.; Saliba, D.; Liao, C.; de Rochambeau, D.; Prinzen, A. L.; Li, J.; Sleiman, H. F. PrintingDNA Strand Patterns on Small

Molecules with Control of Valency, Directionality, and Sequence.

Angew. Chem., Int. Ed. 2019, 58, 30423047.

(190)Busskamp, H.; Keller, S.; Robotta, M.; Drescher, M.; Marx, A. A

New Building Block for DNA Network Formation by Self-Assembly and Polymerase Chain Reaction. Beilstein J. Org. Chem. 2014, 10, 10371046.

(191)Chandra, M.; Keller, S.; Gloeckner, C.; Bornemann, B.; Marx, A. New Branched DNA Constructs. Chem. - Eur. J. 2007, 13, 35583564.

(192)Liu, J.; Wang, R.; Ma, D.; Ouyang, D.; Xi, Z. Efficient

Construction of Stable Gene Nanoparticles Through Polymerase Chain Reaction with Flexible Branched Primers for Gene Delivery. Chem. Commun. 2015, 51, 92089211.

(193)Cimino, G. D.; Gamper, H. B.; Isaacs, S. T.; Hearst, J. E. Psoralens as Photoactive Probes of Nucleic Acid Structure and

Function: Organic Chemistry, Photochemistry, and Biochemistry.

Annu. Rev. Biochem. 1985, 54, 11511193.

(194)Cheng, L.; Deng, H.; Ma, D.; Zhai, B.; Zhang, Q.; Li, L.; Xi, Z.

Branch-PCR Constructed TP53 Gene Nanovector for Potential Cancer Therapy. Chem. Commun. 2018, 54, 96879690.

(195)Guo, X.; Bai, L.; Li, F.; Huck, W. T. S.; Yang, D. Branched DNA Architectures Produced by PCR-Based Assembly as Gene Compart-

ments for Cell-Free Gene-Expression Reactions. ChemBioChem 2019, 20, 25972603.

(196)Orponen, P. Design Methods for 3D Wireframe DNA Nanostructures. Nat. Comput. 2018, 17, 147160.

(197)Han, D. Design of Wireframe DNA Nanostructures-DNA Gridiron. Methods Mol. Biol. 2017, 1500, 2740.

(198)Simmel, S. S.; Nickels, P. C.; Liedl, T. Wireframe and Tensegrity DNA Nanostructures. Acc. Chem. Res. 2014, 47, 16911699.

(199)He, Y.; Tian, Y.; Chen, Y.; Ribbe, A. E.; Mao, C. Geometric SelfSorting in DNA Self-Assembly. Chem. Commun. 2007, 2, 165167.

(200)He, Y.; Ko, S. H.; Tian, Y.; Ribbe, A. E.; Mao, C. Complexity

Emerges from Lattice Overlapping: Implications for Nanopatterning. Small 2008, 4, 13291331.

(201)He, Y.; Tian, Y.; Chen, Y.; Deng, Z.; Ribbe, A. E.; Mao, C.

Sequence Symmetry as a Tool for Designing DNA Nanostructures.

Angew. Chem., Int. Ed. 2005, 44, 66946696.

(202)Zhang, C.; Su, M.; He, Y.; Zhao, X.; Fang, P. A.; Ribbe, A. E.; Jiang, W.; Mao, C. Conformational Flexibility Facilitates Self-Assembly

of Complex DNA Nanostructures. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 1066510669.

(203)He, Y.; Tian, Y.; Ribbe, A. E.; Mao, C. Highly Connected Two-

Dimensional Crystals of DNA Six-Point-Stars. J. Am. Chem. Soc. 2006, 128, 1597815979.

(204)He, Y.; Mao, C. Balancing Flexibility and Stress in DNA Nanostructures. Chem. Commun. 2006, 9, 968969.

(205)Liu, D.; Wang, M. S.; Deng, Z. X.; Walulu, R.; Mao, C. D.

Tensegrity: Construction of Rigid DNA Triangles with Flexible FourArm DNA Junctions. J. Am. Chem. Soc. 2004, 126, 23242325.

(206)Wang, M.; Huang, H.; Zhang, Z.; Xiao, S. J. 2D DNA Lattices

Constructed from Two-Tile DAE-O Systems Possessing Circular Central Strands. Nanoscale 2016, 8, 1887018875.

(207)Yang, D.; Tan, Z.; Mi, Y.; Wei, B. DNA Nanostructures

Constructed with Multi-Stranded Motifs. Nucleic Acids Res. 2017, 45, 36063611.

(208)Matthies, M.; Agarwal, N. P.; Poppleton, E.; Joshi, F. M.; Sulc,

P.; Schmidt, T. L. Triangulated Wireframe Structures Assembled Using Single-Stranded DNA Tiles. ACS Nano 2019, 13, 18391848.

(209)Ali, M.; Afshan, N.; Jiang, C.; Zheng, H.; Xiao, S. J. 2D DNA

Lattice Arrays Assembled from DNA Dumbbell Tiles Using Poly(A-T)- Rich Stems. Nanoscale 2019, 11, 2221622221.

(210)Ko, S. H.; Su, M.; Zhang, C.; Ribbe, A. E.; Jiang, W.; Mao, C.

Synergistic Self-Assembly of RNA and DNA Molecules. Nat. Chem. 2010, 2, 10501055.

(211)Yan, H.; LaBean, T. H.; Feng, L. P.; Reif, J. H. Directed

Nucleation Assembly of DNA Tile Complexes for Barcode-Patterned Lattices. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 81038108.

(212)Lin, C. X.; Liu, Y.; Yan, H. Self-Assembled Combinatorial

Encoding Nanoarrays for Multiplexed Biosensing. Nano Lett. 2007, 7, 507512.

(213)Dugasani, S. R.; Kim, J. A.; Kim, B.; Joshirao, P.; Gnapareddy, B.; Vyas, C.; Kim, T.; Park, S. H.; Manchanda, V. A 2D DNA Lattice as

an Ultrasensitive Detector for Beta Radiations. ACS Appl. Mater. Interfaces 2014, 6, 29742979.

BB

https://dx.doi.org/10.1021/acs.chemrev.0c00294

 

Chem. Rev. XXXX, XXX, XXX−XXX

Chemical Reviews

pubs.acs.org/CR

Review

(214)Huang, K.; Yang, D.; Tan, Z.; Chen, S.; Xiang, Y.; Mi, Y.; Mao,

C.; Wei, B. Self-Assembly of Wireframe DNA Nanostructures from Junction Motifs. Angew. Chem., Int. Ed. 2019, 58, 1212312127.

(215)Sun, X.; Ko, S. H.; Zhang, C.; Ribbe, A. E.; Mao, C. Surface-

Mediated DNA Self-Assembly. J. Am. Chem. Soc. 2009, 131, 1324813249.

(216)Kim, J.; Ha, T. H.; Park, S. H. Substrate-Assisted 2D DNA

Lattices and Algorithmic Lattices from Single-Stranded Tiles. Nanoscale 2015, 7, 1233612342.

(217)Liu, L.; Li, Z.; Li, Y.; Mao, C. Rational Design and Self-Assembly

of Two-Dimensional, Dodecagonal DNA Quasicrystals. J. Am. Chem.

Soc. 2019, 141, 42484251.

(218)Tian, C.; Zhang, C. Three-Dimensional DNA Nanostructures Assembled from DNA Star Motifs. Methods Mol. Biol. 2017, 1500, 1126.

(219)Wu, X.-R.; Wu, C.-W.; Ding, F.; Tian, C.; Jiang, W.; Mao, C.-D.;

Zhang, C. Binary Self-Assembly of Highly Symmetric DNA Nanocages via Sticky-End Engineering. Chin. Chem. Lett. 2017, 28, 851856.

(220)Tian, C.; Li, X.; Liu, Z. Y.; Jiang, W.; Wang, G. S.; Mao, C. D.

Directed Self-Assembly of DNA Tiles into Complex Nanocages. Angew. Chem., Int. Ed. 2014, 53, 80418044.

(221)Zhang, C.; Ko, S. H.; Su, M.; Leng, Y. J.; Ribbe, A. E.; Jiang, W.;

Mao, C. D. Symmetry Controls the Face Geometry of DNA Polyhedra.

J.Am. Chem. Soc. 2009, 131, 14131415.

(222)He, Y.; Su, M.; Fang, P. A.; Zhang, C.; Ribbe, A. E.; Jiang, W.;

Mao, C. On the Chirality of Self-Assembled DNA Octahedra. Angew. Chem., Int. Ed. 2010, 49, 748751.

(223)Zhang, C.; Su, M.; He, Y.; Leng, Y.; Ribbe, A. E.; Wang, G.;

Jiang, W.; Mao, C. Exterior Modification of a DNA Tetrahedron. Chem. Commun. 2010, 46, 67926794.

(224)Li, X.; Zhang, C.; Hao, C. H.; Tian, C.; Wang, G. S.; Mao, C. D.

DNA Polyhedra with T-Linkage. ACS Nano 2012, 6, 51385142.

(225)Li, Y.; Tian, C.; Liu, Z.; Jiang, W.; Mao, C. Structural

Transformation: Assembly of an Otherwise Inaccessible DNA Nanocage. Angew. Chem., Int. Ed. 2015, 54, 59905993.

(226)Shi, X.; Lu, W.; Wang, Z.; Pan, L.; Cui, G.; Xu, J.; LaBean, T. H.

Programmable DNA Tile Self-Assembly Using a Hierarchical Sub-Tile Strategy. Nanotechnology 2014, 25, 075602.

(227)Park, S. H.; Pistol, C.; Ahn, S. J.; Reif, J. H.; Lebeck, A. R.; Dwyer, C.; LaBean, T. H. Finite-Size, Fully Addressable DNA Tile

Lattices Formed by Hierarchical Assembly Procedures. Angew. Chem., Int. Ed. 2006, 45, 735739.

(228)Liu, Y.; Yan, H. Modular Self-Assembly of DNA Lattices with

Tunable Periodicity. Small 2005, 1, 327330.

(229)Lund, K.; Liu, Y.; Lindsay, S.; Yan, H. Self-Assembling a Molecular Pegboard. J. Am. Chem. Soc. 2005, 127, 1760617607.

(230)Park, S. H.; Finkelstein, G.; LaBean, T. H. Stepwise Self-

Assembly of DNA Tile Lattices Using dsDNA Bridges. J. Am. Chem. Soc. 2008, 130, 4041.

(231)Manuguerra, I.; Grossi, G.; Thomsen, R. P.; Lyngso, J.; Pedersen, J. S.; Kjems, J.; Andersen, E. S.; Gothelf, K. V. Construction of

a Polyhedral DNA 12-Arm Junction for Self-Assembly of Wireframe DNA Lattices. ACS Nano 2017, 11, 90419047.

(232)Joshi, H.; Bhatia, D.; Krishnan, Y.; Maiti, P. K. Probing the

Structure and in Silico Stability of Cargo Loaded DNA Icosahedra Using MD Simulations. Nanoscale 2017, 9, 44674477.

(233)Banerjee, A.; Bhatia, D.; Saminathan, A.; Chakraborty, S.; Kar, S.; Krishnan, Y. Controlled Release of Encapsulated Cargo from a DNA

Icosahedron Using a Chemical Trigger. Angew. Chem., Int. Ed. 2013, 52, 68546857.

(234)Bhatia, D.; Surana, S.; Chakraborty, S.; Koushika, S. P.;

Krishnan, Y. A. Synthetic Icosahedral DNA-Based Host-Cargo Complex for Functional in Vivo Imaging. Nat. Commun. 2011, 2, 339.

(235)Veetil, A. T.; Chakraborty, K.; Xiao, K.; Minter, M. R.; Sisodia, S. S.; Krishnan, Y. Cell-Targetable DNA Nanocapsules for

Spatiotemporal Release of Caged Bioactive Small Molecules. Nat. Nanotechnol. 2017, 12, 11831189.

(236)Veetil, A. T.; Jani, M. S.; Krishnan, Y. Chemical Control over

Membrane-Initiated Steroid Signaling with a DNA Nanocapsule. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 94329437.

(237)Bhatia, D.; Arumugam, S.; Nasilowski, M.; Joshi, H.; Wunder, C.; Chambon, V.; Prakash, V.; Grazon, C.; Nadal, B.; Maiti, P. K.; et al. Quantum Dot-Loaded Monofunctionalized DNA Icosahedra for

Single-Particle Tracking of Endocytic Pathways. Nat. Nanotechnol. 2016, 11, 11121119.

(238)Stahl, E.; Praetorius, F.; de Oliveira Mann, C. C.; Hopfner, K. P.;

Dietz, H. Impact of Heterogeneity and Lattice Bond Strength on DNA Triangle Crystal Growth. ACS Nano 2016, 10, 91569164.

(239)Conn, F. W.; Jong, M. A.; Tan, A.; Tseng, R.; Park, E.; Ohayon, Y. P.; Sha, R.; Mao, C.; Seeman, N. C. Time Lapse Microscopy of

Temperature Control During Self-Assembly of 3D DNA Crystals. J. Cryst. Growth 2017, 476, 15.

(240)Hernandez, C.; Birktoft, J. J.; Ohayon, Y. P.; Chandrasekaran, A. R.; Abdallah, H.; Sha, R.; Stojanoff, V.; Mao, C.; Seeman, N. C. Self-

Assembly of 3D DNA Crystals Containing a Torsionally Stressed Component. Cell Chem. Biol. 2017, 24, 14011406.

(241)Wang, T.; Sha, R. J.; Birktoft, J.; Zheng, J. P.; Mao, C. D.;

Seeman, N. C. A DNA Crystal Designed to Contain Two Molecules per Asymmetric Unit. J. Am. Chem. Soc. 2010, 132, 1547115473.

(242)Melinger, J. S.; Sha, R.; Mao, C.; Seeman, N. C.; Ancona, M. G.

Fluorescence and Energy Transfer in Dye-Labeled DNA Crystals. J. Phys. Chem. B 2016, 120, 1228712292.

(243)Sha, R.; Birktoft, J. J.; Nguyen, N.; Chandrasekaran, A. R.;

Zheng, J.; Zhao, X.; Mao, C.; Seeman, N. C. Self-Assembled DNA Crystals: The Impact on Resolution of 5-Phosphates and the DNA Source. Nano Lett. 2013, 13, 793797.

(244)Ohayon, Y. P.; Hernandez, C.; Chandrasekaran, A. R.; Wang, X.; Abdallah, H. O.; Jong, M. A.; Mohsen, M. G.; Sha, R.; Birktoft, J. J.; Lukeman, P. S.; et al. Designing Higher Resolution Self-Assembled 3D

DNA Crystals via Strand Terminus Modifications. ACS Nano 2019, 13, 79577965.

(245)Zhao, J.; Zhao, Y.; Li, Z.; Wang, Y.; Sha, R.; Seeman, N. C.; Mao,

C. Modulating Self-Assembly of DNA Crystals with Rationally Designed Agents. Angew. Chem., Int. Ed. 2018, 57, 1652916532.

(246)Li, Z.; Liu, L.; Zheng, M.; Zhao, J.; Seeman, N. C.; Mao, C.

Making Engineered 3D DNA Crystals Robust. J. Am. Chem. Soc. 2019, 141, 1585015855.

(247)Hong, F.; Jiang, S.; Lan, X.; Narayanan, R. P.; Sulc, P.; Zhang, F.; Liu, Y.; Yan, H. Layered-Crossover Tiles with Precisely Tunable Angles

for 2D and 3D DNA Crystal Engineering. J. Am. Chem. Soc. 2018, 140, 1467014676.

(248)Simmons, C. R.; Zhang, F.; MacCulloch, T.; Fahmi, N.; Stephanopoulos, N.; Liu, Y.; Seeman, N. C.; Yan, H. Tuning the Cavity

Size and Chirality of Self-Assembling 3D DNA Crystals. J. Am. Chem. Soc. 2017, 139, 1125411260.

(249)Zhang, F.; Simmons, C. R.; Gates, J.; Liu, Y.; Yan, H. Self-

Assembly of a 3D DNA Crystal Structure with Rationally Designed SixFold Symmetry. Angew. Chem., Int. Ed. 2018, 57, 1250412507.

(250)Lee, C. C.; MacKay, J. A.; Frechet, J. M.; Szoka, F. C. Designing

Dendrimers for Biological Applications. Nat. Biotechnol. 2005, 23, 15171526.

(251)Um, S. H.; Lee, J. B.; Kwon, S. Y.; Li, Y.; Luo, D. Dendrimer-

Like DNA-Based Fluorescence Nanobarcodes. Nat. Protoc. 2006, 1, 9951000.

(252)He, H.; Dai, J.; Duan, Z.; Meng, Y.; Zhou, C.; Long, Y.; Zheng, B.; Du, J.; Guo, Y.; Xiao, D. Target-Catalyzed Autonomous Assembly of Dendrimer-Like DNA Nanostructures for Enzyme-Free and Signal

Amplified Colorimetric Nucleic Acids Detection. Biosens. Bioelectron. 2016, 86, 985989.

(253)Wu, Y.; Zhang, L.; Cui, C.; Cansiz, S.; Liang, H.; Wu, C.; Teng, I. T.; Chen, W.; Liu, Y.; Hou, W.; et al. Enhanced Targeted Gene

Transduction: AAV2 Vectors Conjugated to Multiple Aptamers via Reducible Disulfide Linkages. J. Am. Chem. Soc. 2018, 140, 25.

(254)Zhao, Y.; Hu, S.; Wang, H.; Yu, K.; Guan, Y.; Liu, X.; Li, N.; Liu,

F. DNA DendrimerStreptavidin Nanocomplex: An Efficient Signal

BC

https://dx.doi.org/10.1021/acs.chemrev.0c00294

 

Chem. Rev. XXXX, XXX, XXX−XXX

Chemical Reviews

pubs.acs.org/CR

Review

Amplifier for Construction of Biosensing Platforms. Anal. Chem. 2017, 89, 69076914.

(255)Brown, C. W., 3rd; Buckhout-White, S.; Diaz, S. A.; Melinger, J. S.; Ancona, M. G.; Goldman, E. R.; Medintz, I. L. Evaluating Dye-

Labeled DNA Dendrimers for Potential Applications in Molecular Biosensing. ACS Sensors 2017, 2, 401410.

(256)Shao, Y.; Jia, H.; Cao, T.; Liu, D. Supramolecular Hydrogels Based on DNA Self-assembly. Acc. Chem. Res. 2017, 50, 659668.

(257)Wang, Y.; Zhu, Y.; Hu, Y.; Zeng, G.; Zhang, Y.; Zhang, C.; Feng, C. How to Construct DNA Hydrogels for Environmental Applications: Advanced Water Treatment and Environmental Analysis. Small 2018, 14, 1703305.

(258)Li, J.; Mo, L.; Lu, C. H.; Fu, T.; Yang, H. H.; Tan, W. Functional

Nucleic Acid-Based Hydrogels for Bioanalytical and Biomedical Applications. Chem. Soc. Rev. 2016, 45, 14101431.

(259)Yao, C.; Yuan, Y.; Yang, D. Magnetic DNA Nanogels for

Targeting Delivery and Multistimuli-Triggered Release of Anticancer Drugs. ACS Appl. Bio Mater. 2018, 1, 20122020.

(260)Geng, J.; Yao, C.; Kou, X.; Tang, J.; Luo, D.; Yang, D. A Fluorescent Biofunctional DNA Hydrogel Prepared by Enzymatic Polymerization. Adv. Healthcare Mater. 2018, 7, 1700998.

(261)Lee, J. B.; Peng, S.; Yang, D.; Roh, Y. H.; Funabashi, H.; Park, N.; Rice, E. J.; Chen, L.; Long, R.; Wu, M.; et al. A Mechanical

Metamaterial Made from a DNA Hydrogel. Nat. Nanotechnol. 2012, 7, 816820.

(262)Li, F.; Yu, W.; Zhang, X.; Guo, X.; Xu, X.; Sun, X.; Yang, D. Preparation of Biomimetic Gene Hydrogel via Polymerase Chain

Reaction for Cell-Free Protein Expression. Sci. China: Chem. 2020, 63, 99106.

(263)Yao, C.; Tang, H.; Wu, W. J.; Tang, J. P.; Guo, W. W.; Luo, D.; Yang, D. Y. Double Rolling Circle Amplification Generates Physically

Cross-Linked DNA Network for Stem Cell Fishing. J. Am. Chem. Soc. 2020, 142, 34223429.

(264)Nishikawa, M.; Mizuno, Y.; Mohri, K.; Matsuoka, N.; Rattanakiat, S.; Takahashi, Y.; Funabashi, H.; Luo, D.; Takakura, Y. Biodegradable CpG DNA Hydrogels for Sustained Delivery of

Doxorubicin and Immunostimulatory Signals In Tumor-Bearing Mice. Biomaterials 2011, 32, 488494.

(265)Li, C.; Rowland, M. J.; Shao, Y.; Cao, T.; Chen, C.; Jia, H.; Zhou, X.; Yang, Z.; Scherman, O. A.; Liu, D. Responsive Double

Network Hydrogels of Interpenetrating DNA and CB[8] Host-Guest Supramolecular Systems. Adv. Mater. 2015, 27, 32983304.

(266)Nguyen, D. T.; Saleh, O. A. Tuning Phase and Aging of DNA Hydrogels Through Molecular Design. Soft Matter 2017, 13, 54215427.

(267)Xiang, B.; He, K.; Zhu, R.; Liu, Z.; Zeng, S.; Huang, Y.; Nie, Z.; Yao, S. Self-Assembled DNA Hydrogel Based on Enzymatically

Polymerized DNA for Protein Encapsulation and Enzyme/DNAzyme Hybrid Cascade Reaction. ACS Appl. Mater. Interfaces 2016, 8, 2280122807.

(268)Shin, S. W.; Park, K. S.; Jang, M. S.; Song, W. C.; Kim, J.; Cho, S.

W.; Lee, J. Y.; Cho, J. H.; Jung, S.; Um, S. H. X-DNA OrigamiNetworked Core-Supported Lipid Stratum. Langmuir 2015, 31, 912916.

(269)Hur, J.; Im, K.; Kim, S. W.; Kim, U. J.; Lee, J.; Hwang, S.; Song, J.; Kim, S.; Hwang, S.; Park, N. DNA Hydrogel Templated Carbon

Nanotube and Polyaniline Assembly and Its Applications for Electrochemical Energy Storage Devices. J. Mater. Chem. A 2013, 1, 1446014466.

(270)Bomboi, F.; Caprara, D.; Fernandez-Castanon, J.; Sciortino, F. Cold-Swappable DNA Gels. Nanoscale 2019, 11, 96919697.

(271)Liu, C.; Han, J.; Pei, Y.; Du, J. Aptamer Functionalized DNA

Hydrogel for Wise-Stage Controlled Protein Release. Appl. Sci. 2018, 8, 1941.

(272) Soontornworajit, B.; Zhou, J.; Snipes, M. P.; Battig, M. R.; Wang, Y. Affinity Hydrogels for Controlled Protein Release Using Nucleic Acid Aptamers and Complementary Oligonucleotides.

Biomaterials 2011, 32, 68396849.

(273)Kandatsu, D.; Cervantes-Salguero, K.; Kawamata, I.; Hamada, S.; Nomura, S. M.; Fujimoto, K.; Murata, S. Reversible Gel-Sol

Transition of a Photo-Responsive DNA Gel. ChemBioChem 2016, 17, 11181121.

(274)Van Nguyen, K.; Minteer, S. D. Investigating DNA Hydrogels as

a New Biomaterial for Enzyme Immobilization in Biobatteries. Chem. Commun. 2015, 51, 1307113073.

(275)Schwenger, A.; Jurkowski, T. P.; Richert, C. Capturing and

Stabilizing Folded Proteins in Lattices Formed with Branched Oligonucleotide Hybrids. ChemBioChem 2018, 19, 15231530.

(276)Ma, Y.; Liu, H.; Mou, Q.; Yan, D.; Zhu, X.; Zhang, C.

Floxuridine-Containing Nucleic Acid Nanogels for Anticancer Drug Delivery. Nanoscale 2018, 10, 83678371.

(277)Pan, G.; Mou, Q.; Ma, Y.; Ding, F.; Zhang, J.; Guo, Y.; Huang, X.; Li, Q.; Zhu, X.; Zhang, C. pH-Responsive and Gemcitabine-

Containing DNA Nanogel To Facilitate the Chemodrug Delivery. ACS Appl. Mater. Interfaces 2019, 11, 4108241090.

(278)Thelu, H. V. P.; Albert, S. K.; Golla, M.; Krishnan, N.; Ram, D.; Srinivasula, S. M.; Varghese, R. Size Controllable DNA Nanogels from

the Self-Assembly of DNA Nanostructures Through Multivalent HostGuest Interactions. Nanoscale 2018, 10, 222230.

(279)Yu, X.; Hu, L.; He, H.; Zhang, F.; Wang, M.; Wei, W.; Xia, Z. Y- Shaped DNA-Mediated Hybrid Nanoflowers as Efficient Gene Carriers

for Fluorescence Imaging of Tumor-Related mRNA in Living Cells.

Anal. Chim. Acta 2019, 1057, 114122.

(280)Yin, P.; Hariadi, R. F.; Sahu, S.; Choi, H. M. T.; Park, S. H.;

LaBean, T. H.; Reif, J. H. Programming DNA Tube Circumferences.

Science 2008, 321, 824826.

(281)Shi, J. Z.; Jia, H. Y.; Liu, D. S. pH-Responsive Supramolecular

Hydrogel Based on One Short Strand DNA. Acta Polym. Sin. 2017, 1, 135142.

(282)Jiang, H. L.; Pan, V.; Vivek, S.; Weeks, E. R.; Ke, Y. G.

Programmable DNA Hydrogels Assembled from Multidomain DNA Strands. ChemBioChem 2016, 17, 11561162.

(283)Zeng, J.; Fu, W. H.; Qi, Z. P.; Zhu, Q. S.; He, H. W.; Huang, C. Z.; Zuo, H.; Mao, C. D. Self-Assembly of Microparticles by Supramolecular Homopolymerization of One Component DNA Molecule. Small 2019, 15, 1805552.

(284)Liu, H.; Chen, Y.; He, Y.; Ribbe, A. E.; Mao, C. Approaching the

Limit: Can One DNA Oligonucleotide Assemble into Large Nanostructures? Angew. Chem., Int. Ed. 2006, 45, 19421945.

(285)Shih, W. M.; Quispe, J. D.; Joyce, G. F. A 1.7-Kilobase Single-

Stranded DNA That Folds into a Nanoscale Octahedron. Nature 2004, 427, 618621.

(286)Han, D. R.; Pal, S.; Yang, Y.; Jiang, S. X.; Nangreave, J.; Liu, Y.;

Yan, H. DNA Gridiron Nanostructures Based on Four-Arm Junctions. Science 2013, 339, 14121415.

(287)Benson, E.; Mohammed, A.; Rayneau-Kirkhope, D.; Gadin, A.;

Orponen, P.; Hogberg, B. Effects of Design Choices on the Stiffness of Wireframe DNA Origami Structures. ACS Nano 2018, 12, 92919299.

(288)Jun, H.; Shepherd, T. R.; Zhang, K.; Bricker, W. P.; Li, S.; Chiu, W.; Bathe, M. Automated Sequence Design of 3D Polyhedral

Wireframe DNA Origami with Honeycomb Edges. ACS Nano 2019, 13, 20832093.

(289)Zhang, T.; Hartl, C.; Frank, K.; Heuer-Jungemann, A.; Fischer, S.; Nickels, P. C.; Nickel, B.; Liedl, T. 3D DNA Origami Crystals. Adv. Mater. 2018, 30, 1800273.

(290)Xuan, F.; Hsing, I. M. Triggering Hairpin-Free Chain-

Branching Growth of Fluorescent DNA Dendrimers for Nonlinear Hybridization Chain Reaction. J. Am. Chem. Soc. 2014, 136, 98109813.

(291)Chandran, H.; Rangnekar, A.; Shetty, G.; Schultes, E. A.; Reif, J.

H.; LaBean, T. H. An Autonomously Self-Assembling Dendritic DNA Nanostructure for Target DNA Detection. Biotechnol. J. 2013, 8, 221227.

(292)Wang, J.; Chao, J.; Liu, H.; Su, S.; Wang, L.; Huang, W.; Willner, I.; Fan, C. Clamped Hybridization Chain Reactions for the Self-

Assembly of Patterned DNA Hydrogels. Angew. Chem., Int. Ed. 2017, 56, 21712175.

BD

https://dx.doi.org/10.1021/acs.chemrev.0c00294

 

Chem. Rev. XXXX, XXX, XXX−XXX

Chemical Reviews

pubs.acs.org/CR

Review

(293)Song, P.; Ye, D.; Zuo, X.; Li, J.; Wang, J.; Liu, H.; Hwang, M. T.; Chao, J.; Su, S.; Wang, L.; et al. DNA Hydrogel with Aptamer-Toehold-

Based Recognition, Cloaking, and Decloaking of Circulating Tumor Cells for Live Cell Analysis. Nano Lett. 2017, 17, 51935198.

(294)Lu, S.; Wang, S.; Zhao, J.; Sun, J.; Yang, X. A pH-Controlled

Bidirectionally Pure DNA Hydrogel: Reversible Self-Assembly and Fluorescence Monitoring. Chem. Commun. 2018, 54, 46214624.

(295)Liu, Z.; Li, Y.; Tian, C.; Mao, C. A Smart DNA Tetrahedron

That Isothermally Assembles or Dissociates in Response to the Solution pH Value Changes. Biomacromolecules 2013, 14, 17111714.

(296)Xing, Y.; Cheng, E.; Yang, Y.; Chen, P.; Zhang, T.; Sun, Y.; Yang,

Z.; Liu, D. Self-Assembled DNA Hydrogels with Designable Thermal and Enzymatic Responsiveness. Adv. Mater. 2011, 23, 11171121.

(297)Liu, H.; Cao, T.; Xu, Y.; Dong, Y.; Liu, D. Tuning the Mechanical Properties of a DNA Hydrogel in Three Phases Based on ATP Aptamer. Int. J. Mol. Sci. 2018, 19, 1633.

(298)Xing, Z.; Caciagli, A.; Cao, T.; Stoev, I.; Zupkauskas, M.;

ONeill, T.; Wenzel, T.; Lamboll, R.; Liu, D.; Eiser, E. Microrheology of DNA Hydrogels. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 81378142.

(299)Wu, F.; Zhao, Z.; Chen, C.; Cao, T.; Li, C.; Shao, Y.; Zhang, Y.; Qiu, D.; Shi, Q.; Fan, Q. H.; et al. Self-Collapsing of Single Molecular Poly-Propylene Oxide (PPO) in a 3D DNA Network. Small 2018, 14, 1703426.

(300)Zhao, Z.; Wang, C.; Yan, H.; Liu, Y. Soft Robotics Programmed with Double Crosslinking DNA Hydrogels. Adv. Funct. Mater. 2019, 29, 1905911.

(301)Li, Z.; Davidson-Rozenfeld, G.; Vazquez-Gonzalez, M.; Fadeev, M.; Zhang, J.; Tian, H.; Willner, I. Multi-Triggered Supramolecular DNA/Bipyridinium Dithienylethene Hydrogels Driven by Light,

Redox, and Chemical Stimuli for Shape-Memory and Self-Healing Applications. J. Am. Chem. Soc. 2018, 140, 1769117701.

(302)Li, Q.; Liu, L.; Mao, D.; Yu, Y.; Li, W.; Zhao, X.; Mao, C. ATP-

Triggered, Allosteric Self-Assembly of DNA Nanostructures. J. Am. Chem. Soc. 2020, 142, 665668.

(303)Liu, N.; Liedl, T. DNA-Assembled Advanced Plasmonic Architectures. Chem. Rev. 2018, 118, 30323053.

(304)Latorre, A.; Lorca, R.; Zamora, F.; Somoza, A. Enhanced

Fluorescence of Silver Nanoclusters Stabilized with Branched Oligonucleotides. Chem. Commun. 2013, 49, 49504952.

(305)Cutler, J. I.; Zheng, D.; Xu, X.; Giljohann, D. A.; Mirkin, C. A. Polyvalent Oligonucleotide Iron Oxide Nanoparticle ClickConjugates. Nano Lett. 2010, 10, 14771480.

(306)Wang, Z. G.; Zhan, P. F.; Ding, B. Q. Self-Assembled Catalytic

DNA Nanostructures for Synthesis of Para-directed Polyaniline. ACS Nano 2013, 7, 15911598.

(307)Brady, R. A.; Brooks, N. J.; Cicuta, P.; Di Michele, L.

Crystallization of Amphiphilic DNA C-stars. Nano Lett. 2017, 17, 32763281.

(308)Dutta, P. K.; Levenberg, S.; Loskutov, A.; Jun, D.; Saer, R.; Beatty, J. T.; Lin, S.; Liu, Y.; Woodbury, N. W.; Yan, H. A DNA-

Directed Light-Harvesting/Reaction Center System. J. Am. Chem. Soc. 2014, 136, 1661816625.

(309)Li, C.; Faulkner-Jones, A.; Dun, A. R.; Jin, J.; Chen, P.; Xing, Y.; Yang, Z.; Li, Z.; Shu, W.; Liu, D.; et al. Rapid Formation of a Supramolecular Polypeptide-DNA Hydrogel for in Situ Three-

Dimensional Multilayer Bioprinting. Angew. Chem., Int. Ed. 2015, 54, 39573961.

(310)Gacanin, J.; Kovtun, A.; Fischer, S.; Schwager, V.; Quambusch, J.; Kuan, S. L.; Liu, W.; Boldt, F.; Li, C.; Yang, Z.; et al. Spatiotemporally Controlled Release of Rho-Inhibiting C3 Toxin from a Protein-DNA Hybrid Hydrogel for Targeted Inhibition of Osteoclast Formation and Activity. Adv. Healthcare Mater. 2017, 6, 1700392.

(311)Kundu, A.; Nandi, S.; Nandi, A. K. Nucleic Acid Based Polymer

and Nanoparticle Conjugates: Synthesis, Properties and Applications.

Prog. Mater. Sci. 2017, 88, 136185.

(312)Daniel, M. C.; Astruc, D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and

Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 2004, 104, 293346.

(313)Murphy, C. J.; Gole, A. M.; Stone, J. W.; Sisco, P. N.; Alkilany, A.

M.; Goldsmith, E. C.; Baxter, S. C. Gold Nanoparticles in Biology: Beyond Toxicity to Cellular Imaging. Acc. Chem. Res. 2008, 41, 17211730.

(314)Chen, Y.; Mao, C. pH-Induced Reversible Expansion/ Contraction of Gold Nanoparticle Aggregates. Small 2008, 4, 21912194.

(315)Cutler, J. I.; Auyeung, E.; Mirkin, C. A. Spherical Nucleic Acids.

J. Am. Chem. Soc. 2012, 134, 13761391.

(316)Park, S. Y.; Lytton-Jean, A. K.; Lee, B.; Weigand, S.; Schatz, G.

C.; Mirkin, C. A. DNA-Programmable Nanoparticle Crystallization.

Nature 2008, 451, 553556.

(317)Mastroianni, A. J.; Claridge, S. A.; Alivisatos, A. P. Pyramidal

and Chiral Groupings of Gold Nanocrystals Assembled Using DNA Scaffolds. J. Am. Chem. Soc. 2009, 131, 84558459.

(318)Jones, M. R.; Macfarlane, R. J.; Lee, B.; Zhang, J.; Young, K. L.;

Senesi, A. J.; Mirkin, C. A. DNA-Nanoparticle Superlattices Formed from Anisotropic Building Blocks. Nat. Mater. 2010, 9, 913917.

(319)Cigler, P.; Lytton-Jean, A. K.; Anderson, D. G.; Finn, M. G.; Park, S. Y. DNA-Controlled Assembly of a NaTl Lattice Structure from

Gold Nanoparticles and Protein Nanoparticles. Nat. Mater. 2010, 9, 918922.

(320)Edwardson, T. G.; Lau, K. L.; Bousmail, D.; Serpell, C. J.;

Sleiman, H. F. Transfer of Molecular Recognition Information from DNA Nanostructures to Gold Nanoparticles. Nat. Chem. 2016, 8, 162170.

(321)Li, N.; Shang, Y.; Han, Z.; Wang, T.; Wang, Z. G.; Ding, B.

Fabrication of Metal Nanostructures on DNA Templates. ACS Appl. Mater. Interfaces 2019, 11, 1383513852.

(322)Yao, G.; Li, J.; Li, Q.; Chen, X.; Liu, X.; Wang, F.; Qu, Z.; Ge, Z.; Narayanan, R. P.; Williams, D.; et al. Programming Nanoparticle Valence Bonds with Single-Stranded DNA Encoders. Nat. Mater. 2020, 19, 781.

(323)Li, Y.; Qi, X.; Lei, C.; Yue, Q.; Zhang, S. Simultaneous SERS

Detection and Imaging of Two Biomarkers on the Cancer Cell Surface by Self-Assembly of Branched DNA-Gold Nanoaggregates. Chem. Commun. 2014, 50, 99079909.

(324)Chen, P.; Zhang, T.; Zhou, T.; Liu, D. Number-Controlled

Spatial Arrangement of Gold Nanoparticles with DNA Dendrimers. RSC Adv. 2016, 6, 7055370556.

(325)Guo, L.; Xu, Y.; Ferhan, A. R.; Chen, G.; Kim, D. H. Oriented Gold Nanoparticle Aggregation for Colorimetric Sensors with

Surprisingly High Analytical Figures of Merit. J. Am. Chem. Soc. 2013, 135, 1233812345.

(326)Eiser, E. DNA-Nanoparticle Crystals: Flip-Flop Lattices. Nat. Mater. 2015, 14, 751752.

(327)Ji, M.; Ma, N.; Tian, Y. 3D Lattice Engineering of Nanoparticles by DNA Shells. Small 2019, 15, 1805401.

(328)Zheng, J. W.; Constantinou, P. E.; Micheel, C.; Alivisatos, A. P.;

Kiehl, R. A.; Seeman, N. C. Two-Dimensional Nanoparticle Arrays Show the Organizational Power of Robust DNA Motifs. Nano Lett. 2006, 6, 15021504.

(329)Liu, L.; Zheng, M.; Li, Z.; Li, Q.; Mao, C. Patterning

Nanoparticles with DNA Molds. ACS Appl. Mater. Interfaces 2019, 11, 1385313858.

(330)He, Y.; Ye, T.; Ribbe, A. E.; Mao, C. DNA-Templated

Fabrication of Two-Dimensional Metallic Nanostructures by Thermal Evaporation Coating. J. Am. Chem. Soc. 2011, 133, 17421744.

(331)Zhang, C.; Li, X.; Tian, C.; Yu, G. M.; Li, Y. L.; Jiang, W.; Mao,

C. D. DNA Nanocages Swallow Gold Nanoparticles (AuNPs) to Form AuNP@DNA Cage Core-Shell Structures. ACS Nano 2014, 8, 11301135.

(332)Guo, W.; Qi, X. J.; Orbach, R.; Lu, C. H.; Freage, L.; Mironi-

Harpaz, I.; Seliktar, D.; Yang, H. H.; Willner, I. Reversible Ag(+)- Crosslinked DNA Hydrogels. Chem. Commun. 2014, 50, 40654068.

(333)Guo, W.; Orbach, R.; Mironi-Harpaz, I.; Seliktar, D.; Willner, I.

Fluorescent DNA Hydrogels Composed of Nucleic Acid-Stabilized Silver Nanoclusters. Small 2013, 9, 37483752.

BE

https://dx.doi.org/10.1021/acs.chemrev.0c00294

 

Chem. Rev. XXXX, XXX, XXX−XXX

Chemical Reviews

pubs.acs.org/CR

Review

(334)Hui, C.; Shen, C.; Tian, J.; Bao, L.; Ding, H.; Li, C.; Tian, Y.; Shi,

X.; Gao, H. J. Core-Shell Fe3O4@SiO2 Nanoparticles Synthesized with Well-Dispersed Hydrophilic Fe3O4 Seeds. Nanoscale 2011, 3, 701705.

(335)Wang, G.; Chen, L.; He, X.; Zhu, Y.; Zhang, X. Detection of Polynucleotide Kinase Activity by Using a Gold Electrode Modified

with Magnetic Microspheres Coated with Titanium Dioxide Nanoparticles and a DNA Dendrimer. Analyst 2014, 139, 38953900.

(336)Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S.

Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science 2005, 307, 538544.

(337)Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H.

Quantum Dot Bioconjugates for Imaging, Labelling and Sensing. Nat. Mater. 2005, 4, 435446.

(338)Lim, S. Y.; Shen, W.; Gao, Z. Q. Carbon Quantum Dots and Their Applications. Chem. Soc. Rev. 2015, 44, 362381.

(339)Shen, J.; Tang, Q.; Li, L.; Li, J.; Zuo, X.; Qu, X.; Pei, H.; Wang,

L.; Fan, C. Valence-Engineering of Quantum Dots Using Programmable DNA Scaffolds. Angew. Chem., Int. Ed. 2017, 56, 1607716081.

(340)Klein, W. P.; Díaz, S. A.; Buckhout-White, S.; Melinger, J. S.; Cunningham, P. D.; Goldman, E. R.; Ancona, M. G.; Kuang, W.; Medintz, I. L. Utilizing HomoFRET to Extend DNA-Scaffolded Photonic Networks and Increase Light-Harvesting Capability. Adv. Opt. Mater. 2018, 6, 1700679.

(341)Edwardson, T. G.; Carneiro, K. M.; McLaughlin, C. K.; Serpell, C. J.; Sleiman, H. F. Site-Specific Positioning of Dendritic Alkyl Chains

on DNA Cages Enables Their Geometry-Dependent Self-Assembly.

Nat. Chem. 2013, 5, 868875.

(342)Dohno, C.; Makishi, S.; Nakatani, K.; Contera, S. Amphiphilic DNA Tiles for Controlled Insertion and 2D Assembly on Fluid Lipid

Membranes: The Effect on Mechanical Properties. Nanoscale 2017, 9, 30513058.

(343)Lacroix, A.; Edwardson, T. G. W.; Hancock, M. A.; Dore, M. D.;

Sleiman, H. F. Development of DNA Nanostructures for High-Affinity Binding to Human Serum Albumin. J. Am. Chem. Soc. 2017, 139, 73557362.

(344)Laing, B. M.; Juliano, R. L. DNA Three-Way Junctions

Stabilized by Hydrophobic Interactions for Creation of Functional Nanostructures. ChemBioChem 2015, 16, 12841287.

(345)Brady, R. A.; Kaufhold, W. T.; Brooks, N. J.; Fodera, V.; Di Michele, L. Flexibility Defines Structure in Crystals of Amphiphilic DNA Nanostars. J. Phys.: Condens. Matter 2019, 31, 074003.

(346)Yang, Z.; Chen, Y.; Li, G.; Tian, Z.; Zhao, L.; Wu, X.; Ma, Q.;

Liu, M.; Yang, P. Supramolecular Recognition of Three Way Junction DNA by a Cationic Calix[3]carbazole. Chem. - Eur. J. 2018, 24, 60876093.

(347)Boulais, E.; Sawaya, N. P. D.; Veneziano, R.; Andreoni, A.; Banal, J. L.; Kondo, T.; Mandal, S.; Lin, S.; Schlau-Cohen, G. S.;

Woodbury, N. W.; et al. Programmed Coherent Coupling in a Synthetic DNA-Based Excitonic Circuit. Nat. Mater. 2018, 17, 159166.

(348)Buckhout-White, S.; Spillmann, C. M.; Algar, W. R.; Khachatrian, A.; Melinger, J. S.; Goldman, E. R.; Ancona, M. G.; Medintz, I. L. Assembling Programmable FRET-Based Photonic Networks Using Designer DNA Scaffolds. Nat. Commun. 2014, 5, 5615.

(349)Wang, X.; Sha, R.; Kristiansen, M.; Hernandez, C.; Hao, Y.;

Mao, C.; Canary, J. W.; Seeman, N. C. An Organic Semiconductor Organized into 3D DNA Arrays by Bottom-up Rational Design.

Angew. Chem., Int. Ed. 2017, 56, 64456448.

(350)Yang, H.; Altvater, F.; de Bruijn, A. D.; McLaughlin, C. K.; Lo, P. K.; Sleiman, H. F. Chiral Metal-DNA Four-Arm Junctions and

Metalated Nanotubular Structures. Angew. Chem., Int. Ed. 2011, 50, 46204623.

(351)Hansen, M. H.; Blakskjaer, P.; Petersen, L. K.; Hansen, T. H.; Hojfeldt, J. W.; Gothelf, K. V.; Hansen, N. J. V. A Yoctoliter-Scale DNA

Reactor for Small-Molecule Evolution. J. Am. Chem. Soc. 2009, 131, 13221327.

(352)White, M. F.; Lilley, D. M. J. Interaction of the Resolving

Enzyme YDC2 with the Four-Way DNA Junction. Nucleic Acids Res. 1998, 26, 56095616.

(353)Wilner, O. I.; Weizmann, Y.; Gill, R.; Lioubashevski, O.;

Freeman, R.; Willner, I. Enzyme Cascades Activated on Topologically Programmed DNA Scaffolds. Nat. Nanotechnol. 2009, 4, 249254.

(354)Wu, Y.; Li, C.; Boldt, F.; Wang, Y.; Kuan, S. L.; Tran, T. T.; Mikhalevich, V.; Fortsch, C.; Barth, H.; Yang, Z.; et al. Programmable

Protein-DNA Hybrid Hydrogels for the Immobilization and Release of Functional Proteins. Chem. Commun. 2014, 50, 1462014622.

(355)Li, C.; Chen, P.; Shao, Y.; Zhou, X.; Wu, Y.; Yang, Z.; Li, Z.;

Weil, T.; Liu, D. A Writable Polypeptide-DNA Hydrogel with Rationally Designed Multi-Modification Sites. Small 2015, 11, 11381143.

(356)Li, N.; Wang, X. Y.; Xiang, M. H.; Liu, J. W.; Yu, R. Q.; Jiang, J. H. Programmable Self-Assembly of Protein-Scaffolded DNA Nano-

hydrogels for Tumor-Targeted Imaging and Therapy. Anal. Chem. 2019, 91, 26102614.

(357)Rinker, S.; Ke, Y.; Liu, Y.; Chhabra, R.; Yan, H. Self-Assembled

DNA Nanostructures for Distance-Dependent Multivalent LigandProtein Binding. Nat. Nanotechnol. 2008, 3, 418422.

(358)Ge, Z.; Su, Z.; Simmons, C. R.; Li, J.; Jiang, S.; Li, W.; Yang, Y.; Liu, Y.; Chiu, W.; Fan, C.; et al. Redox Engineering of Cytochrome C

using DNA Nanostructure-Based Charged Encapsulation and Spatial Control. ACS Appl. Mater. Interfaces 2019, 11, 1387413880.

(359)Wong, N. Y.; Zhang, C.; Tan, L. H.; Lu, Y. Site-Specific

Attachment of Proteins onto a 3D DNA Tetrahedron Through Backbone-Modified Phosphorothioate DNA. Small 2011, 7, 14271430.

(360)Zhang, C.; Tian, C.; Guo, F.; Liu, Z.; Jiang, W.; Mao, C. DNA-

Directed Three-Dimensional Protein Organization. Angew. Chem., Int. Ed. 2012, 51, 33823385.

(361)Huang, D. J.; Huang, Z. M.; Xiao, H. Y.; Wu, Z. K.; Tang, L. J.; Jiang, J. H. Protein Scaffolded DNA Tetrads Enable Efficient Delivery

and Ultrasensitive Imaging of miRNA Through Crosslinking Hybridization Chain Reaction. Chem. Sci. 2018, 9, 48924897.

(362)Malo, J.; Mitchell, J. C.; Venien-Bryan, C.; Harris, J. R.; Wille,

H.; Sherratt, D. J.; Turberfield, A. J. Engineering a 2D protein-DNA crystal. Angew. Chem., Int. Ed. 2005, 44, 30573061.

(363)Praetorius, F.; Dietz, H. Self-Assembly of Genetically Encoded DNA-Protein Hybrid Nanoscale Shapes. Science 2017, 355, No. eaam5488.

(364)Huang, R.; He, N.; Li, Z. Recent Progresses in DNA

Nanostructure-Based Biosensors for Detection of Tumor Markers.

Biosens. Bioelectron. 2018, 109, 2734.

(365)Zhang, P.; Li, Z.; Wang, H.; Zhuo, Y.; Yuan, R.; Chai, Y. DNA Nanomachine-Based Regenerated Sensing Platform: A Novel Electrochemiluminescence Resonance Energy Transfer Strategy for Ultra-

High Sensitive Detection of microRNA from Cancer Cells. Nanoscale 2017, 9, 23102316.

(366)Zhang, Z.; Liu, Y.; Liu, P.; Yang, L.; Jiang, X.; Luo, D.; Yang, D. Non-Invasive Detection of Gastric Cancer Relevant D-Amino Acids

with Luminescent DNA/Silver Nanoclusters. Nanoscale 2017, 9, 1936719373.

(367)Zhang, J.; Dong, Y.; Zhu, W.; Xie, D.; Zhao, Y.; Yang, D.; Li, M. Ultrasensitive Detection of Circulating Tumor DNA of Lung Cancer

via an Enzymatically Amplified SERS-Based Frequency Shift Assay.

ACS Appl. Mater. Interfaces 2019, 11, 1814518152.

(368)Yang, Z.; Zhang, S.; Zhao, H.; Niu, H.; Wu, Z. S.; Chang, H. T. Branched DNA Junction-Enhanced Isothermal Circular Strand

Displacement Polymerization for Intracellular Imaging of microRNAs. Anal. Chem. 2018, 90, 1389113899.

(369)Xue, C.; Zhang, S. X.; Ouyang, C. H.; Chang, D.; Salena, B. J.; Li, Y.; Wu, Z. S. Target-Induced Catalytic Assembly of Y-shaped DNA

and Its Application for in Situ Imaging of microRNAs. Angew. Chem., Int. Ed. 2018, 57, 97399743.

(370)Wang, K.; Lei, Y.; Zhong, G. X.; Zheng, Y. J.; Sun, Z. L.; Peng, H.

P.; Chen, W.; Liu, A. L.; Chen, Y. Z.; Lin, X. H. Dual-Probe Electrochemical DNA Biosensor Based on the YJunction Structure and Restriction Endonuclease Assisted Cyclic Enzymatic Amplification

for Detection of Double-Strand DNA of PML/RARalpha Related Fusion Gene. Biosens. Bioelectron. 2015, 71, 463469.

BF

https://dx.doi.org/10.1021/acs.chemrev.0c00294

 

Chem. Rev. XXXX, XXX, XXX−XXX

Chemical Reviews

pubs.acs.org/CR

Review

(371)Liu, Y.; Zhu, D.; Cao, Y.; Ma, W.; Yu, Y.; Guo, M.; Xing, X. A Novel Universal Signal Amplification Probe-Based Electrochemilumi-

nescence Assay for Sensitive Detection of Pathogenic Bacteria.

Electrochem. Commun. 2017, 85, 1114.

(372)Xie, H.; Chai, Y.; Yuan, Y.; Yuan, R. Highly Effective Molecule Converting Strategy Based on Enzyme-Free Dual Recycling Amplifi-

cation for Ultrasensitive Electrochemical Detection of ATP. Chem. Commun. 2017, 53, 83688371.

(373)Zhang, L.; Lei, J.; Liu, L.; Li, C.; Ju, H. Self-Assembled DNA

Hydrogel as Switchable Material for Aptamer-Based Fluorescent Detection of Protein. Anal. Chem. 2013, 85, 1107711082.

(374)Chen, M.; Gan, N.; Li, T.; Wang, Y.; Xu, Q.; Chen, Y. An Electrochemical Aptasensor for Multiplex Antibiotics Detection Using Y-shaped DNA-Based Metal Ions Encoded Probes with NMOF

Substrate and CSRP Target-Triggered Amplification Strategy. Anal. Chim. Acta 2017, 968, 3039.

(375)Liu, B.; Chen, J.; Wei, Q.; Zhang, B.; Zhang, L.; Tang, D. TargetRegulated Proximity Hybridization with Three-Way DNA Junction for in Situ Enhanced Electronic Detection of Marine Biotoxin Based on

Isothermal Cycling Signal Amplification Strategy. Biosens. Bioelectron. 2015, 69, 241248.

(376)Zhou, L.; Sun, N.; Xu, L.; Chen, X.; Cheng, H.; Wang, J.; Pei, R. Dual Signal Amplification by an On-Command Pure DNA Hydrogel

Encapsulating HRP for Colorimetric Detection of Ochratoxin A. RSC Adv. 2016, 6, 114500114504.

(377)Bai, L.; Chai, Y.; Pu, X.; Yuan, R. A Signal-On Electrochemical Aptasensor for Ultrasensitive Detection of Endotoxin Using Three-

Way DNA Junction-Aided Enzymatic Recycling and Graphene Nanohybrid for Amplification. Nanoscale 2014, 6, 29022908.

(378)Zhou, W.; Saran, R.; Liu, J. Metal Sensing by DNA. Chem. Rev. 2017, 117, 82728325.

(379)Lu, C.; Huang, Z.; Liu, B.; Liu, Y.; Ying, Y.; Liu, J. Poly-cytosine

DNA as a High-Affinity Ligand for Inorganic Nanomaterials. Angew. Chem., Int. Ed. 2017, 56, 62086212.

(380)Miao, P.; Tang, Y.; Wang, L. DNA Modified Fe3O4@Au Magnetic Nanoparticles as Selective Probes for Simultaneous

Detection of Heavy Metal Ions. ACS Appl. Mater. Interfaces 2017, 9, 39403947.

(381)Feldkamp, U.; Sacca, B.; Niemeyer, C. M. Dendritic DNA

Building Blocks for Amplified Detection Assays and Biomaterials.

Angew. Chem., Int. Ed. 2009, 48, 59966000.

(382)Liu, S.; Gong, H.; Sun, X.; Liu, T.; Wang, L. A Programmable Y- Shaped Junction Scaffold-Mediated Modular and Cascade Amplifica-

tion Strategy for the One-Step, Isothermal and Ultrasensitive Detection of Target DNA. Chem. Commun. 2015, 51, 1775617759.

(383)Li, J.; Liu, Q.; Xi, H.; Wei, X.; Chen, Z. Y-Shaped DNA Duplex Structure-Triggered Gold Nanoparticle Dimers for Ultrasensitive

Colorimetric Detection of Nucleic Acid with the Dark-Field Microscope. Anal. Chem. 2017, 89, 1285012856.

(384)Somasundaram, S.; Holtan, M. D.; Easley, C. J. Understanding

Signal and Background in a Thermally Resolved, Single-Branched DNA Assay Using Square Wave Voltammetry. Anal. Chem. 2018, 90, 35843591.

(385)Lee, J. B.; Campolongo, M. J.; Kahn, J. S.; Roh, Y. H.; Hartman,

M. R.; Luo, D. DNA-Based Nanostructures for Molecular Sensing.

Nanoscale 2010, 2, 188197.

(386)Li, J.; Qi, X.-J.; Du, Y.-Y.; Fu, H.-E.; Chen, G.-N.; Yang, H.-H. Efficient Detection of Secondary Structure Folded Nucleic Acids

Related to Alzheimers Disease Based on Junction Probes. Biosens. Bioelectron. 2012, 36, 142146.

(387)Hu, R.; Fu, T.; Zhang, X. B.; Kong, R. M.; Qiu, L. P.; Liu, Y. R.; Liang, X. T.; Tan, W.; Shen, G. L.; Yu, R. Q. A Proximity-Dependent Surface Hybridization Strategy for Constructing an Efficient Signal-On

Electrochemical DNAzyme Sensing System. Chem. Commun. 2012, 48, 95079509.

(388)Campuzano, S.; Fan, X.; Zhang, X.; Lou, X.; Quan, Y.

Biosensors Based on Sandwich Assays. Anal. Bioanal. Chem. 2018, 410, 75637564.

(389)Li, F.; Dong, Y.; Zhang, Z.; Lv, M.; Wang, Z.; Ruan, X.; Yang, D. A Recyclable Biointerface Based on Cross-Linked Branched DNA

Nanostructures for Ultrasensitive Nucleic Acid Detection. Biosens. Bioelectron. 2018, 117, 562566.

(390)Cheng, L.; Zhang, Z.; Zuo, D.; Zhu, W.; Zhang, J.; Zeng, Q.; Yang, D.; Li, M.; Zhao, Y. Ultrasensitive Detection of Serum microRNA Using Branched-DNA Based SERS Platform Combining Simultaneous

Detection of Alpha-Fetoprotein for Early Diagnosis of Liver Cancer.

ACS Appl. Mater. Interfaces 2018, 10, 3486934877.

(391)Dong, Y.; Yao, C.; Wang, Z.; Luo, D.; Yang, D. Target-

Triggered Polymerization of Branched DNA Enables Enzyme-Free and Fast Discrimination of Single-Base Changes. iScience 2019, 21, 228240.

(392)Wang, J.; Jiang, M.; Nilsen, T. W.; Getts, R. C. Dendritic

Nucleic Acid Probes for DNA Biosensors. J. Am. Chem. Soc. 1998, 120, 82818282.

(393)Bi, S.; Hao, S.; Li, L.; Zhang, S. Bio-Bar-Code Dendrimer-Like DNA as Signal Amplifier for Cancerous Cells Assay Using Ruthenium

Nanoparticle-Based Ultrasensitive Chemiluminescence Detection.

Chem. Commun. 2010, 46, 60936095.

(394)Tan, H.; Li, X.; Liao, S.; Yu, R.; Wu, Z. Highly-Sensitive Liquid

Crystal Biosensor Based on DNA Dendrimers-Mediated Optical Reorientation. Biosens. Bioelectron. 2014, 62, 8489.

(395)Wang, H.; Yuan, Y.; Zhuo, Y.; Chai, Y.; Yuan, R. Sensitive

Electrochemiluminescence Immunosensor for Detection of N-Acetyl- beta-D-glucosaminidase Based on a Light-Switch Molecule Combined with DNA Dendrimer. Anal. Chem. 2016, 88, 57975803.

(396)Li, L.; Niu, C.; Li, T.; Wan, Y.; Zhou, Y.; Wang, H.; Yuan, R.; Liao, P. Ultrasensitive Electrochemiluminescence Biosensor for Detection of Laminin Based on DNA Dendrimer-Carried Lumino-

phore and DNA Nanomachine-Mediated Target Recycling Amplification. Biosens. Bioelectron. 2018, 101, 206212.

(397)Liu, S.; Lin, Y.; Liu, T.; Cheng, C.; Wei, W.; Wang, L.; Li, F. Enzyme-Free and Label-Free Ultrasensitive Electrochemical Detection

of DNA and Adenosine Triphosphate by Dendritic DNA ConcatamerBased Signal Amplification. Biosens. Bioelectron. 2014, 56, 1218.

(398)Zhao, Y.; Wang, H.; Tang, W.; Hu, S.; Li, N.; Liu, F. An in Situ Assembly of a DNA-Streptavidin Dendrimer Nanostructure: A New

Amplified Quartz Crystal Microbalance Platform for Nucleic Acid Sensing. Chem. Commun. 2015, 51, 1066010663.

(399)Guo, B.; Wen, B.; Cheng, W.; Zhou, X.; Duan, X.; Zhao, M.; Xia, Q.; Ding, S. An Enzyme-Free and Label-Free Surface Plasmon Resonance Biosensor for Ultrasensitive Detection of Fusion Gene

Based on DNA Self-Assembly Hydrogel with Streptavidin Encapsulation. Biosens. Bioelectron. 2018, 112, 120126.

(400)Collins, M. L.; Irvine, B.; Tyner, D.; Fine, E.; Zayati, C.; Chang, C.; Horn, T.; Ahle, D.; Detmer, J.; Shen, L. P.; et al. A Branched DNA

Signal Amplification Assay for Quantification of Nucleic Acid Targets below 100 Molecules/ml. Nucleic Acids Res. 1997, 25, 29792984.

(401)Tsongalis, G. J. Branched DNA Technology in Molecular Diagnostics. Am. J. Clin. Pathol. 2006, 126, 448453.

(402)Liu, Y.; Wei, Y.; Cao, Y.; Zhu, D.; Ma, W.; Yu, Y.; Guo, M. Ultrasensitive Electrochemiluminescence Detection of Staphylococcus

Aureus via Enzyme-Free Branched DNA Signal Amplification Probe.

Biosens. Bioelectron. 2018, 117, 830837.

(403)Dyrbye, H.; Nassehi, D.; Sorensen, L. P.; Juhler, M.; Laursen, H.; Broholm, H. VEGF-A mRNA Measurement in Meningiomas Using

a New Simplified Approach: Branched DNA and Chemiluminescence.

Clin. Neuropathol. 2016, 35, 1321.

(404)Lee, A. C.; Dai, Z.; Chen, B.; Wu, H.; Wang, J.; Zhang, A.; Zhang, L.; Lim, T. M.; Lin, Y. Electrochemical Branched-DNA Assay

for Polymerase Chain Reaction-Free Detection and Quantification of Oncogenes in Messenger RNA. Anal. Chem. 2008, 80, 94029410.

(405)Xuan, F.; Fan, T. W.; Hsing, I. M. Electrochemical Interrogation of Kinetically-Controlled Dendritic DNA/PNA Assembly for Immobi-

lization-Free and Enzyme-Free Nucleic Acids Sensing. ACS Nano 2015, 9, 50275033.

(406)Zhou, L.; Wang, Y.; Yang, C.; Xu, H.; Luo, J.; Zhang, W.; Tang, X.; Yang, S.; Fu, W.; Chang, K.; et al. A Label-Free Electrochemical

BG

https://dx.doi.org/10.1021/acs.chemrev.0c00294

 

Chem. Rev. XXXX, XXX, XXX−XXX

Chemical Reviews

pubs.acs.org/CR

Review

Biosensor for microRNAs Detection Based on DNA Nanomaterial by Coupling with Y-shaped DNA Structure and Non-Linear Hybridization Chain Reaction. Biosens. Bioelectron. 2019, 126, 657663.

(407)Chang, C.-C.; Chen, C.-Y.; Chuang, T.-L.; Wu, T.-H.; Wei, S.- C.; Liao, H.; Lin, C.-W. Aptamer-Based Colorimetric Detection of

Proteins Using a Branched DNA Cascade Amplification Strategy and Unmodified Gold Nanoparticles. Biosens. Bioelectron. 2016, 78, 200205.

(408)Ma, C.; Wu, Z.; Wang, W.; Jiang, Q.; Shi, C. Three-Dimensional

DNA Nanostructures for Colorimetric Assay of Nucleic Acids. J. Mater. Chem. B 2015, 3, 28532857.

(409)Zhou, W.; Li, Q.; Liu, H.; Yang, J.; Liu, D. Building

Electromagnetic Hot Spots in Living Cells via Target-Triggered Nanoparticle Dimerization. ACS Nano 2017, 11, 35323541.

(410)Lee, C. C.; Liao, Y. C.; Lai, Y. H.; Lee, C. C.; Chuang, M. C.

Recognition of Dual Targets by a Molecular Beacon-Based Sensor: Subtyping of Influenza A Virus. Anal. Chem. 2015, 87, 54105416.

(411)Meng, H.-M.; Zhang, X.; Lv, Y.; Zhao, Z.; Wang, N.-N.; Fu, T.; Fan, H.; Liang, H.; Qiu, L.; Zhu, G.; et al. DNA Dendrimer: An Efficient

Nanocarrier of Functional Nucleic Acids for Intracellular Molecular Sensing. ACS Nano 2014, 8, 61716181.

(412)Ding, S. Y.; You, E. M.; Tian, Z. Q.; Moskovits, M.

Electromagnetic Theories of Surface-Enhanced Raman Spectroscopy.

Chem. Soc. Rev. 2017, 46, 40424076.

(413)Wang, Z.; Zong, S.; Wu, L.; Zhu, D.; Cui, Y. SERS-Activated

Platforms for Immunoassay: Probes, Encoding Methods, and Applications. Chem. Rev. 2017, 117, 79107963.

(414)Wen, J.; Chen, J.; Zhuang, L.; Zhou, S. Designed Diblock

Hairpin Probes for the Nonenzymatic and Label-Free Detection of Nucleic Acid. Biosens. Bioelectron. 2016, 79, 656660.

(415)Yue, S.; Song, X.; Song, W.; Bi, S. An Enzyme-Free Molecular

Catalytic Device: Dynamically Self-Assembled DNA Dendrimers for in Situ Imaging of microRNAs in Live Cells. Chem. Sci. 2019, 10, 16511658.

(416)Bi, S.; Xiu, B.; Ye, J.; Dong, Y. Target-Catalyzed DNA Four-Way Junctions for CRET Imaging of microRNA, Concatenated Logic

Operations, and Self-Assembly of DNA Nanohydrogels for Targeted Drug Delivery. ACS Appl. Mater. Interfaces 2015, 7, 2331023319.

(417)Chen, J.; Zhou, S. Label-Free DNA Y Junction for Bisphenol A

Monitoring Using Exonuclease III-Based Signal Protection Strategy.

Biosens. Bioelectron. 2016, 77, 277283.

(418)Wang, Y.; Zhang, X.; Zhao, L.; Bao, T.; Wen, W.; Zhang, X.; Wang, S. Integrated Amplified Aptasensor with in-Situ Precise

Preparation of Copper Nanoclusters for Ultrasensitive Electrochemical Detection of microRNA 21. Biosens. Bioelectron. 2017, 98, 386391.

(419)Kong, R. M.; Zhang, X. B.; Zhang, L. L.; Huang, Y.; Lu, D. Q.; Tan, W. H.; Shen, G. L.; Yu, R. Q. Molecular Beacon-Based Junction Probes for Efficient Detection of Nucleic Acids via a True Target-

Triggered Enzymatic Recycling Amplification. Anal. Chem. 2011, 83, 1417.

(420)Li, Y.; Chang, Y.; Yuan, R.; Chai, Y. Highly Efficient Target Recycling-Based Netlike Y-DNA for Regulation of Electrocatalysis

toward Methylene Blue for Sensitive DNA Detection. ACS Appl. Mater. Interfaces 2018, 10, 2521325218.

(421)Chen, Y.; Guo, S.; Zhao, M.; Zhang, P.; Xin, Z.; Tao, J.; Bai, L. Amperometric DNA Biosensor for Mycobacterium Tuberculosis Detection Using Flower-Like Carbon Nanotubes-Polyaniline Nano-

hybrid and Enzyme-Assisted Signal Amplification Strategy. Biosens. Bioelectron. 2018, 119, 215220.

(422)Wang, Q.; Yang, L.; Yang, X.; Wang, K.; He, L.; Zhu, J.; Su, T. An Electrochemical DNA Biosensor Based on the YJunction

Structure and Restriction Endonuclease-Aided Target Recycling Strategy. Chem. Commun. 2012, 48, 29822984.

(423)Liu, J. W.; Lu, Y. A. Colorimetric Lead Biosensor Using

DNAzyme-Directed Assembly of Gold Nanoparticles. J. Am. Chem. Soc. 2003, 125, 66426643.

(424)Liu, J.; Lu, Y. Rational Design of Turn-On Allosteric

DNAzyme Catalytic Beacons for Aqueous Mercury Ions with Ultrahigh Sensitivity and Selectivity. Angew. Chem., Int. Ed. 2007, 46, 75877590.

(425)Wang, Z.; Lee, J. H.; Lu, Y. Label-Free Colorimetric Detection of Lead Ions with a Nanomolar Detection Limit and Tunable Dynamic

Range by using Gold Nanoparticles and DNAzyme. Adv. Mater. 2008, 20, 32633267.

(426)Elbaz, J.; Lioubashevski, O.; Wang, F. A.; Remacle, F.; Levine, R.

D.; Willner, I. DNA Computing Circuits Using Libraries of DNAzyme Subunits. Nat. Nanotechnol. 2010, 5, 417422.

(427)Peng, H.; Newbigging, A. M.; Wang, Z.; Tao, J.; Deng, W.; Le,

X. C.; Zhang, H. DNAzyme-Mediated Assays for Amplified Detection of Nucleic Acids and Proteins. Anal. Chem. 2018, 90, 190207.

(428)Kumar, S.; Jain, S.; Dilbaghi, N.; Ahluwalia, A. S.; Hassan, A. A.;

Kim, K. H. Advanced Selection Methodologies for DNAzymes in Sensing and Healthcare Applications. Trends Biochem. Sci. 2019, 44, 190213.

(429)Khachigian, L. M. Deoxyribozymes as Catalytic Nanotherapeutic Agents. Cancer Res. 2019, 79, 879888.

(430)Gong, L.; Zhao, Z.; Lv, Y. F.; Huan, S. Y.; Fu, T.; Zhang, X. B.;

Shen, G. L.; Yu, R. Q. DNAzyme-Based Biosensors and Nanodevices.

Chem. Commun. 2015, 51, 979995.

(431)Zhou, W.; Liu, J. Multi-Metal-Dependent Nucleic Acid Enzymes. Metallomics 2018, 10, 3048.

(432)Feng, X.; Duan, X.; Liu, L.; Feng, F.; Wang, S.; Li, Y.; Zhu, D.

Fluorescence Logic-Signal-Based Multiplex Detection of Nucleases with the Assembly of a Cationic Conjugated Polymer and Branched DNA. Angew. Chem., Int. Ed. 2009, 48, 53165321.

(433)Jia, J.; Chen, H. G.; Feng, J.; Lei, J. L.; Luo, H. Q.; Li, N. B. A

Regenerative Ratiometric Electrochemical Biosensor for Selective

Detecting Hg2+ Based on Y-shaped/Hairpin DNA Transformation.

Anal. Chim. Acta 2016, 908, 95101.

(434)Kahn, J. S.; Ruiz, R. C.; Sureka, S.; Peng, S.; Derrien, T. L.; An,

D.; Luo, D. DNA Microgels as a Platform for Cell-Free Protein Expression and Display. Biomacromolecules 2016, 17, 20192026.

(435)Bai, L.; Guo, X.; Zhang, X.; Yu, W.; Yang, D. Saccharides Create

a Crowding Environment for Gene Expression in Cell-Free Systems. Langmuir 2019, 35, 59315936.

(436)Jiao, Y.; Liu, Y.; Luo, D.; Huck, W. T. S.; Yang, D. Microfluidic-

Assisted Fabrication of Clay Microgels for Cell-Free Protein Synthesis.

ACS Appl. Mater. Interfaces 2018, 10, 2930829313.

(437)Yang, D.; Peng, S.; Hartman, M. R.; Gupton-Campolongo, T.; Rice, E. J.; Chang, A. K.; Gu, Z.; Lu, G. Q.; Luo, D. Enhanced Transcription and Translation in Clay Hydrogel and Implications for Early Life Evolution. Sci. Rep. 2013, 3, 3165.

(438)Park, N.; Um, S. H.; Funabashi, H.; Xu, J.; Luo, D. A Cell-Free

Protein-Producing Gel. Nat. Mater. 2009, 8, 432437.

(439)Park, N.; Kahn, J. S.; Rice, E. J.; Hartman, M. R.; Funabashi, H.;

Xu, J.; Um, S. H.; Luo, D. High-Yield Cell-Free Protein Production from P-Gel. Nat. Protoc. 2009, 4, 17591770.

(440)Song, J.; Lee, M.; Kim, T.; Na, J.; Jung, Y.; Jung, G. Y.; Kim, S.;

Park, N. A RNA Producing DNA Hydrogel as a Platform for a High Performance RNA Interference System. Nat. Commun. 2018, 9, 4331.

(441)Bae, S. J.; Song, W. C.; Jung, S. H.; Cho, S. W.; Kim, D. I.; Um, S.

H. A Gene-Networked Gel Matrix-Supported Lipid Bilayer as a Synthetic Nucleus System. Langmuir 2012, 28, 1703617042.

(442)Guo, X.; Li, F.; Bai, L.; Yu, W.; Zhang, X.; Zhu, Y.; Yang, D.

Gene Circuit Compartment on Nano-Interface Facilitates Cascade Gene Expression. J. Am. Chem. Soc. 2019, 141, 1917119177.

(443)Kellett, A.; Molphy, Z.; Slator, C.; McKee, V.; Farrell, N. P.

Molecular Methods for Assessment of Non-Covalent MetallodrugDNA Interactions. Chem. Soc. Rev. 2019, 48, 971988.

(444)Oleksi, A.; Blanco, A. G.; Boer, R.; Uson,́I.; Aymamí, J.; Rodger,

A.; Hannon, M. J.; Coll, M. Molecular Recognition of a Three-Way DNA Junction by a Metallosupramolecular Helicate. Angew. Chem., Int. Ed. 2006, 45, 12271231.

(445) Liu, J.; Wei, T.; Zhao, J.; Huang, Y.; Deng, H.; Kumar, A.; Wang, C.; Liang, Z.; Ma, X.; Liang, X. J. Multifunctional Aptamer-Based Nanoparticles for Targeted Drug Delivery to Circumvent Cancer Resistance. Biomaterials 2016, 91, 4456.

BH

https://dx.doi.org/10.1021/acs.chemrev.0c00294

 

Chem. Rev. XXXX, XXX, XXX−XXX

Соседние файлы в папке ДНК-нанотехнологии 1 введение и основные методы