Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Информатика.docx
Скачиваний:
69
Добавлен:
09.02.2015
Размер:
485.95 Кб
Скачать
  1. Информация. Информатика. Информационные технологии.

Информатика – это наука и вид практической деятельности, связанные с процессами обработки информации с помощью вычислительной техники. Основная задача информатики заключается в определении общих закономерностей процессов обработки информации: создания, передачи, хранения и использования в различных сферах человеческой деятельности. Прикладные задачи связаны с разработкой методов, необходимых для реализации информационных процессов с использованием технических средств. Обычно под информацией понимается совокупность сведений, расширяющая представление об объектах и явлениях окружающей среды, их свойствах, состоянии и взаимосвязях. Информационные системы – это организованные человеком системы сбора, хранения, обработки и выдачи информации, необходимой для принятия эффективных решений. Задачей информационных систем является удовлетворение потребностей потребителя в информации. Потребитель должен своевременно получать информацию в требуемой форме, после ее систематизации и необходимой обработки. Информационная технология – это процесс, использующий совокупность средств и методов сбора, обработки и передачи данных о состоянии объекта, процесса или явления для получения новой информации об их состоянии. Таким образом, информационная технология – это процесс переработки первичной информации в информационный продукт. Информационная технология является процессом, состоящим из четко регламентированных правил выполнения операций, действий, этапов разной степени сложности над данными, хранящимися в компьютерах. Основная цель информационной технологии – в результате целенаправленных действий по переработке первичной информации получить необходимую для пользователя информацию.

  1. Информационные революции. Информационный кризис и информатизация общества.

В истории развития цивилизации произошло несколько информационных революций – преобразований общественных отношений из-за кардинальных изменений в сфере обработки информации. Следствием подобных преобразований являлось приобретение человеческим обществом нового качества.

Первая революция связана с изобретением письменности, что привело к гигантскому качественному и количественному скачку. Появилась возможность передачи знаний от поколения к поколениям.

Вторая (середина XVI в.) вызвана изобретением книгопечатания, которое радикально изменило индустриальное общество, культуру, организацию деятельности.

Третья (конец XIX в.) обусловлена изобретением электричества, благодаря которому появились телеграф, телефон, радио, позволяющие оперативно передавать и накапливать информацию в любом объеме.

Четвертая (70-е гг. XX в.) связана с изобретением микропроцессорной технологии и появлением персонального компьютера. На микропроцессорах и интегральных схемах создаются компьютеры, компьютерные сети, системы передачи данных (информационные коммуникации). Этот период характеризуют три основные нововведения:

· переход от механических и электрических средств преобразования информации к электронным;

· миниатюризация всех узлов, устройств, приборов, машин;

· создание программно-управляемых устройств и процессов.

Для создания более целостного представления об этом периоде целесообразно познакомиться со сменой поколений электронно-вычислительных машин (ЭВМ) и сопоставить эти сведения с этапами в области обработки и передачи информации.

1-е поколение (начало 50-х гг.). Элементная база – электронные лампы. ЭВМ отличались большими габаритами, большим потреблением энергии, малым быстродействием, низкой надежностью, программированием в кодах.

2-е поколение (с конца 50-х гг.). Элементная база – полупроводниковые элементы. Улучшились по сравнению с ЭВМ предыдущего поколения все технические характеристики. Для программирования используются алгоритмические языки.

3-е поколение (начало 60-х гг.). Элементная база – интегральные схемы, многослойный печатный монтаж. Резкое снижение габаритов ЭВМ, повышение их надежности, увеличение производительности. Доступ с удаленных терминалов.

4-е поколение (с середины 70-х гг.). Элементная база – микропроцессоры, большие интегральные схемы. Улучшились технические характеристики. Массовый выпуск персональных компьютеров. Направления развития: мощные многопроцессорные вычислительные системы с высокой производительностью, создание дешевых микро-ЭВМ.

5-е поколение (с середины 80-х гг.). Началась разработка интеллектуальных компьютеров, пока не увенчавшаяся успехом. Внедрение во все сферы компьютерных сетей и их объединение, использование распределенной обработки данных, повсеместное применение компьютерных информационных технологий.

Последняя информационная революция выдвигает на первый план новую отрасль – информационную индустрию, связанную с производством технических средств, методов, технологий для производства новых знаний. Важнейшими составляющими информационной индустрии становятся все виды информационных технологий, особенно телекоммуникации. Современная информационная технология опирается на достижения в области компьютерной техники и средств связи.

Усложнение индустриального производства, социальной, экономической и политической жизни, изменение динамики процессов во всех сферах деятельности человека привели, с одной стороны, к росту потребностей в знаниях, а с другой – к созданию новых средств и способов удовлетворения этих потребностей.

Бурное развитие компьютерной техники и информационных технологий послужило толчком к развитию общества, построенного на использовании различной информации и получившего название информационного общества.

Японские ученые считают, что в информационном обществе процесс компьютеризации даст людям доступ к надежным источникам информации, избавит их от рутинной работы, обеспечит высокий уровень автоматизации обработки информации в производственной и социальной сферах. Движущей силой развития общества должно стать производство информационного, а не материального продукта. Материальный же продукт станет более информационно емким, что означает увеличение доли нововведений, дизайна и маркетинга в его стоимости.

Материальной и технологической базой информационного общества становятся различного рода системы на базе компьютерной техники и компьютерных сетей, информационной технологии, телекоммуникационной связи.

Информационное общество – общество, в котором большинство работающих занято производством, хранением, переработкой и реализацией информации, особенно высшей ее формы – знаний. Деятельность людей сосредотачивается главным образом на обработке информации, а материальное производство и производство энергии возлагается на машины.

При переходе к информационному обществу возникает новая индустрия переработки информации на базе компьютерных и телекоммуникационных информационных технологий.

Выделим характерные черты информационного общества:

· решена проблема информационного кризиса, т.е. разрешено противоречие между информационной лавиной и информационным голодом;

· обеспечен приоритет информации по сравнению с другими ресурсами;

· главной формой развития станет информационная экономика;

· в основу общества будут заложены автоматизированные генерация, хранение, обработка и использование знаний с помощью новейшей информационной техники и технологии;

· информационная технология приобретет глобальный характер, охватывая все сферы социальной деятельности человека;

· формируется информационное единство всей человеческой цивилизации;

· с помощью средств информатики реализован свободный доступ каждого человека к информационным ресурсам всей цивилизации;

· реализованы гуманистические принципы управления обществом и воздействия на окружающую среду.

Кроме положительных моментов прогнозируются и опасные тенденции:

· все большее влияние на общество средств массовой информации;

информационные технологии могут разрушить частную жизнь людей и организаций;

· существует проблема отбора качественной и достоверной информации;

· многим людям будет трудно адаптироваться к среде информационного общества. Существует опасность разрыва между "информационной элитой" (людьми, занимающимися разработкой информационных технологий) и потребителями.

  1. Информация и данные. Формы представления информации.

Данные – это информация, представленная в некоторой форме (формализованном виде), что обеспечивает ее хранение, обработку и передачу.

Информации обладает следующими свойствами:

- запоминаемость, то есть способность воспринять информацию и хранить ее продолжительное время;

- передаваемость, то есть способность информации к копированию – восприятием ее другой системой без искажения;

- воспроизводимость характеризует неиссякаемость и неистощимость информации, то есть при копировании информация остается тождественной себе; свойство воспроизводимости не является базовым и тесно связано с передаваемостью;

- преобразуемость – это способность информации менять способ и форму своего существования.

Эффективность использования информации для принятия решений определяется показателями ее качества. Рассмотрим основные показатели качества информации, и чем они определяются.

Репрезентативность (объективность) определяется правильностью отбора и формирования информации в целях адекватного отражения свойств объекта.

Содержательность зависит от семантической емкости, равной отношению количества семантической информации в сообщении к объему сообщения.

Достаточность (полнота) – это минимальный, но достаточный для принятия правильного решения набор показателей. Как неполная, то есть недостаточная для принятия правильного решения, так и избыточная информация снижает эффективность принимаемых пользователем решений. Однако избыточная информация позволяет восстановить частично утраченную информацию. Например, в слове «дост*пнос*ь» потеряно 18% букв, однако можно понять по оставшимся буквам, что это слово «доступность». Русский язык, как и другие естественные языки, обладает большой избыточностью.

Доступность определяется степенью легкости восприятия и получения информации пользователем.

Актуальность определяется степенью соответствия информации моменту ее использования.

Своевременность определяется поступлением информации не позже заранее назначенного момента времени, зависящего от времени решения поставленной задачи.

Точность – это степень близости получаемой информации к реальному состоянию объекта, процесса, явления и т. п.

Достоверность – это вероятность того, что отображаемое информацией значение параметра отличается от истинного значения этого параметра в пределах необходимой точности.

Устойчивость – это свойство информации реагировать на изменение исходных данных, сохраняя при этом необходимую точность. Устойчивость и репрезентативность обусловлены правильностью выбора метода отбора и формирования информации.

Ценность определяется эффективностью принятых на основе полученной информации решений.

  1. Системы счисления. Перевод числа из десятичной в двоичную систему.

Системы счисления разделяют на позиционные и непозиционные.

Непозиционная система счисления – это система, в которой цифры не меняют своего количественного эквивалента в зависимости от местоположения (позиции) в записи числа.

К непозиционным системам счисления относится система римских цифр, основанная на употреблении латинских букв для десятичных разрядов I = 1, X = 10, С = 100, М = 1000 и их половин V = 5, L = 50, D = 500.

Рассмотрим запись единиц. Числа 1 и 5 представляются соответственно цифрами I и V. Чтобы представить числа 2 или 3 необходимо записать соответствующее число единиц: II или III. Для представления чисел 4 или 9 к цифре V (пять) или X (десять) слева дописывается единица I: IV или IX. Для представления чисел 6, 7, 8 к цифре V справа подписываются соответствующее число единиц: VI, VII, VIII. Аналогично записываются десятки, сотни и тысячи.

Число в системе римских чисел записывается по схеме «тысячи-сотни-десятки-единицы».

Непозиционные системы счисления обладают следующими недостатками:

- сложность представления больших чисел (больше 10000);

- сложность выполнения арифметических операций над числами, записанными с помощью этих систем счисления.

Позиционная система счисления – это система, в которой количественный эквивалент цифры зависит от ее положения в числе. Примером позиционной системы счисления является используемая нами десятичная система счисления.

  1. Этапы развития вычислительной техники. Определение ЭВМ.

ЭВМ (персональный компьютер (ПК)) – это универсальная вычислительная диалоговая система, реализованная на базе микропроцессорных средств, компактных внешних запоминающих устройств, способная выполнять последовательность операций над информацией определенной программы. В основе функционирования любой ЭВМ лежит архитектура. Архитектура – это наиболее общие принципы построения ЭВМ, реализующие программное управление работой и взаимодействием основных ее функциональных узлов.

Поколение

Элементная база процес-сора

Макс. емкость ОЗУ, байт

Макс. быстро-действие процес-сора, оп/с

Основные языки програм-мирования

Управление ЭВМ пользователем

Первое

1951-1954

электронные лампы

102

104

Машинный код

Пульт управления и перфокарты

Второе

1958-1960

транзисторы

103

106

Ассемблер

Перфокарты и перфоленты

Третье

1965-1968

ИС

104

107

Процедур-ные языки высокого уровня (ЯВУ)

Алфавитно-цифровой терминал

Четвертое

1976-1979

БИС

105

108

Процедур-ные ЯВУ

Монохромный или графический дисплей, клавиатура

Четвертое

с 1985

СБИС

107

109

Процедур-ные ЯВУ

Цветной графический дисплей, клавиатура, «мышь» и др.

Пятое

усовершенст-вованные СБИС

108

1012

Языки логического программи-рования

Цветной графический дисплей и устройства голосовой связи

  1. Классификация ЭВМ.

По принципу действия

В этом случае критерием является форма представления информации, с которой они работают. Цифровые ВМ – вычислительные машины дискретного действия; работают с информацией, представленной в дискретной, а точнее в цифровой форме.

Аналоговые ВМ - вычислительные машины непрерывного действия; работают с информацией, представленной в непрерывной (аналоговой) форме.

По назначению

Универсальные, проблемно-ориентированные, специализированные.

По этапам создания

Разделение ЭВМ на поколения условно, так как поколения сменялись постепенно, поэтому временные границы между поколениями размыты. Поколения ЭВМ разделяют в зависимости от физических элементов или технологии их изготовления, используемые при построении ЭВМ. При сравнении быстродействия ЭВМ под операцией понимают операцию над числами с плавающей точкой.

  1. Обобщенная структурная схема ЭВМ.

ЭВМ состоит из системного блока, к которому подключаются монитор и клавиатура. В системном блоке находятся основные компоненты ЭВМ:

ВЗУ – внешние запоминающие устройства (жесткий диск, приводы CD/DVD/Blu-Ray, флэш-память); некоторые ВЗУ располагаются внутри системного блока и подключаются к контроллерам ВЗУ, а некоторые – снаружи системного блока и подключаются к портам ввода-вывода.

ВК – видеокарта (видеоадаптер, видеоконтроллер) формирует изображение и передает его на монитор;

ИП – источник питания обеспечивает питание всех блоков ЭВМ по системной шине;

КВЗУ – контроллеры внешних запоминающих устройств управляют обменом информацией с ВЗУ;

КК – контроллер клавиатуры содержит буфер, в который помещаются вводимые символы, и обеспечивает передачу этих символов другим компонентам;

КПВВ – контроллеры портов ввода-вывода управляют обменом информацией с периферийными устройствами;

МП – микропроцессор выполняет команды программы, управляет взаимодействием всех компонент ЭВМ;

ОЗУ – оперативное запоминающее устройство хранит исходные данные и результаты обработки информации во время функционирования ЭВМ;

ПЗУ – постоянное запоминающее устройство хранит программы, выполняемые во время загрузки ЭВМ;

ПУ – периферийные устройства различного назначения: принтеры, сканнеры, манипуляторы «мышь» и др.;

СА – сетевой адаптер (карта) обеспечивает обмен информацией с локальными и глобальными компьютерными сетями.

  1. Устройства ввода ЭВМ. Назначение, типы.

К устройствам ввода информации относят клавиатуру и такие ПУ, как сканнеры, манипуляторы типа «мышь», джойстики,

  1. Устройства вывода ЭВМ. Назначение, типы.

а к устройствам вывода информации – монитор и такие ПУ, как принтеры.

  1. Основная память ЭВМ. Назначение и состав.

ОЗУ – оперативное запоминающее устройство хранит исходные данные и результаты обработки информации во время функционирования ЭВМ;

ПЗУ – постоянное запоминающее устройство хранит программы, выполняемые во время загрузки ЭВМ;

МПП – это память с самым меньшим временем доступа в ЭВМ.

Запоминающие устройства, используемые в ЭВМ, состоят из последовательности ячеек. Каждая ячейка содержит значение одного байта и имеет собственный номер (адрес), по которому происходит обращение к ее содержимому. Все данные в ЭВМ хранятся в двоичном виде нулей и единиц.

Запоминающие устройства характеризуются двумя параметрами:

- объем памяти – размер в байтах, доступных для хранения информации;

- время доступа к ячейкам памяти – средний временной интервал, в течение которого находится требуемая ячейка памяти и из нее извлекаются данные.

Оперативное запоминающее устройство (ОЗУ; RAM – Random Access Memory) предназначено для оперативной записи, хранения и чтения информации (программ и данных), непосредственно участвующей в информационно-вычислительном процессе, выполняемом ЭВМ в текущий период времени. После выключения питания ЭВМ, информация в ОЗУ уничтожается, поэтому она не подходит для долговременного хранения информации. Каждая ячейка памяти имеет свой адрес, выраженный числом.

Постоянное запоминающее устройство (ПЗУ; ROM – Read Only Memory) хранит неизменяемую (постоянную) информацию: программы, выполняемые во время загрузки системы, и постоянные параметры ЭВМ. В момент включения ЭВМ в его ОЗУ отсутствуют данные, так как ОЗУ не сохраняет данные после выключения ЭВМ. Но МП необходимы команды, в том числе и сразу после включения. Поэтому МП обращается по специальному стартовому адресу, который ему всегда известен, за своей первой командой. Этот адрес из ПЗУ. Основное назначение программ из ПЗУ состоит в том, чтобы проверить состав и работоспособность системы и обеспечить взаимодействие с клавиатурой, монитором, жесткими и гибкими дисками. Обычно изменить информацию ПЗУ нельзя.

Кроме ПЗУ существует энергонезависимая память CMOS RAM (Complementary Metal-Oxide Semiconductor RAM), в которой хранятся данные об аппаратной конфигурации ЭВМ: о подключенных к ЭВМ устройствах и их параметры, параметры загрузки, пароль на вход в систему, текущее время и дата. Питание памяти CMOS RAM осуществляется от батарейки. Если заряд батарейки заканчивается, то настройки, хранящиеся в памяти CMOS RAM, сбрасываются, и ЭВМ использует настройки по умолчанию.

  1. Внешние запоминающие устройства ЭВМ. Назначение и типы.

Внешние запоминающие устройства (ВЗУ) предназначены для долговременного хранения и транспортировки информации. ВЗУ взаимодействуют с системной шиной через контроллеры внешних запоминающих устройств (КВЗУ). КВЗУ обеспечивают интерфейс ВЗУ и системной шины в режиме прямого доступа к памяти, то есть без участия МП. Интерфейс – это совокупность связей с унифицированными сигналами и аппаратуры, предназначенной для обмена данными между устройствами вычислительной системы.

ВЗУ можно разделить по критерию транспортировки на переносные и стационарные. Переносные ВЗУ состоят из носителя, подключаемого к порту ввода-вывода (обычно USB), (флэш-память) или носителя и привода (накопители на гибких магнитных дисках, приводы CD и DVD). В стационарных ВЗУ носитель и привод объединены в единое устройство (накопитель на жестких магнитных дисках). Стационарные ВЗУ предназначены для хранения информации внутри ЭВМ.

Рассмотрим три типа ВЗУ, разделенные по критерию физической основы или технологии производства носителя: 1) магнитные носители; 2) оптические носители; 3) флэш-память.

  1. Магнитные носители основаны на свойстве материалов находиться в двух состояниях: «не намагничено»-«намагничено», кодирующие 0 и 1. По поверхности носителя перемещается головка, которая может считывать состояние или изменять его.

Рассмотрим три типа магнитных носителей.

1. Накопители на жестких магнитных дисках (НЖМД; harddisk – жесткий диск) представляют собой несколько дисков с магнитным покрытием, нанизанные на шпиндель, в герметичном металлическом корпусе. При вращении диска происходит быстрый доступ головки к любой части диска.

В НЖМД может быть до десяти дисков. Их поверхность размечается дорожками (track). Каждая дорожка имеет свой номер. Дорожки с одинаковыми номерами, расположенные одна над другой на разных дисках образуют цилиндр. Объем жестких дисков превышает 1 Тбайт (2011 г.), а время доступа – 0,005-0,03 с.

2.Накопители на гибких магнитных дисках (НГМД; FDD – Floppy Disk Drive) предназначены для записи информации на переносные носители – дискеты. Дискета представляет собой гибкий диск с магнитным покрытием, помещенный в жесткий корпус со шторкой, открываемой для доступа головки к диску, и прорезью для защиты от записи. Как и в случае жесткого диска, поверхность гибкого диска разбивается на дорожки, которые в свою очередь разбиваются на секторы. Секторы и дорожки формируются во время форматирования дискеты.

3.Дисковые массивы RAID (Redundant Array of Inexpensive Disks – массив недорогих дисков с избыточностью) используются для хранения данных в суперкомпьютерах (мощных ЭВМ предназначенных для решения крупных вычислительных задач) и серверах (подключенных к сети ЭВМ, предоставляющих доступ к хранящимся в них данным). Массивы RAID – это несколько запоминающих устройств на жестких дисках, объединенные в один большой накопитель, обслуживаемый специальным RAID-контроллером. Одна и та же информация хранится на различных жестких дисках и при потере информации на одном жестком диске восстанавливает ее с другого жесткого диска. RAID-массивы поддерживают технологию Plug and Play, то есть замену одного из дисков без остановки всего массива.

2) Оптические носители представляют собой компакт-диски диаметром 12 см (4,72 дюйма) или мини-диски диаметром 8 см (3,15 дюйма). Оптические носители состоят из трех слоев:

1) поликарбонатная основа (внешняя сторона диска);

2) активный (регистрирующий) слой пластика с изменяемой фазой состояния;

3) тончайший отражающий слой (внутренняя сторона диска).

В центре компакт-диска находится круглое отверстие, надеваемое на шпиндель привода компакт-дисков.

Запись и считывание информации на компакт-диск осуществляется головкой, которая может испускать лазерный луч. Физический контакт между головкой и поверхностью диска отсутствует, что увеличивает срок службы компакт-диска. Фаза второго пластикового слоя, кристаллическая или аморфная, изменяется в зависимости от скорости остывания после разогрева поверхности лазерным лучом в процессе записи, выполняемой в приводе. При медленном остывании пластик переходит в кристаллическое состояние и информация стирается (записывается «0»); при быстром остывании (если разогрета только микроскопическая точка) элемент пластика переходит в аморфное состояние (записывается «1»).

В зависимости от возможности чтения/записи все компакт-диски можно разделить на три типа:

1) ROM (Read Only Memory) – только для чтения; запись невозможна;

2) R (Recordable) – для однократной записи и многократного чтения; диск может быть однажды записан; записанную информацию изменить нельзя и она доступна только для чтения;

3) RW (ReWritable) – для многократной записи и чтения; информация на диске может быть многократно перезаписана.

Типы компакт-дисков

CD

DVD

ROM

CD-ROM

DVD-ROM

R

CD-R

DVD-R, DVD+R

RW

CD-RW

DVD-RW, DVD+RW, DVD-RAM

3) Флэш-память представляет собой микросхемы памяти, заключенные в пластиковый корпус, и предназначена для долговременного хранения информации с возможностью многократной перезаписи. Микросхемы флэш-памяти не имеют движущихся частей. При работе указатели в микросхеме перемещаются на начальный адрес блока, и затем байты данных передаются в последовательном порядке. При производстве микросхем флэш-памяти используются логические элементы NAND (И-НЕ). Количество циклов перезаписи флэш-памяти превышает 1 млн. В настоящее время размер флэш-памяти превышает 64 Гбайт (2011 г.), что позволило флэш-памяти вытеснить дискеты. Флэш-память подключается к порту USB.

  1. Центральные устройства ЭВМ. Состав и принцип работы.

МП память диски видео сетев адапт порты

Микропроцессор (МП; CPU – Central Processing Unit (центральный обрабатывающий модуль)) – центральный блок ЭВМ, управляющий работой всех компонент ЭВМ и выполняющий операции над информацией. Операции производятся в регистрах, составляющих микропроцессорную память.

Основные функции МП:

- выполнение команд программы, расположенной в ОЗУ; команда состоит из кода, определяющего, что эта команда делает, и операндов, над которыми эта команда осуществляется;

- управление пересылкой информации между микропроцессорной памятью, ОЗУ и периферийными устройствами;

- обработка прерываний;

- управление компонентами ЭВМ.

Арифметико-логическое устройство (АЛУ) выполняет все арифметические (сложение, вычитание, умножение, деление) и логические (конъюнкция, дизъюнкция и др.) операции над целыми двоичными числами и символьной информацией.

Устройство синхронизации (УС) определяет дискретные интервалы времени – такты работы МП между выборками очередной команды. Частота, с которой осуществляется выборка команд, называется тактовой частотой.

Интерфейс МП (ИМП) предназначен для связи и согласования МП с системной шиной ЭВМ. Принятые команды и данные временно помещаются в кэш-память второго уровня. Размер кэш-памяти второго уровня – 256-2048 Кбайт. Ранее кэш-память второго уровня размещалась на материнской плате.

Микропроцессорная память (МПП) включает 14 основных двухбайтовых запоминающих регистров и множество (до 256) дополнительных регистров. Регистры – это быстродействующие ячейки памяти различного размера. Основные регистры можно разделить на 4 группы.

Основными параметрами МП являются тактовая частота, разрядность и рабочее напряжение.

Тактовая частота определяет количество элементарных операций (тактов), выполняемых МП за единицу времени. Тактовая частота современных МП измеряется в ГГц (1 Гц соответствует выполнению одной операции за одну секунду, 1 ГГц = 109 Гц). Чем больше тактовая частота, тем больше команд может выполнить МП, и тем больше его производительность. Разрядность процессора показывает, сколько бит данных МП может принять и обработать в своих регистрах за один такт.