Добавил:
ext4sy@mail.ru Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lektsia_2_Obschie_svoi_774_stva_vozbudimykh_tkanei_774.doc
Скачиваний:
8
Добавлен:
22.06.2022
Размер:
153.6 Кб
Скачать

8. Особенности гистологического строения гладких м-ц. Механизм мышечного сокращения и расслабления. Самостоятельно.

Гладкие мышцы.

Гладкие мышцы названы в противоположность поперечно­полосатым мышцам, поскольку в них не упорядочены слои актиновых и миозиновых филаментов, формируемых в саркомеры. Внутри миоплазмы филаменты гладкой мышцы распределены в какой-то степени бессистемно. Гладкие мышцы, образующие стен­ки внутренних органов — пищевода, мочевого пузыря, артерий, артериол и др., состоят из мелких одноядерных веретенообразных клеток диаметром 2...20 мкм, который увеличивается в 10... 100 раз при сокращении мышцы. Клетки объединены друг с другом посредством плотных контактов, обеспечивающих подоб­но электрическим синапсам распространение электрического тока от клетки к клетке. Иннервация гладкой мышцы сильно отличает­ся от иннервации скелетной. Аксоны не образуют синапсов с мы­шечными волокнами. Освобождение медиатора происходит из

многочисленных расширений по всей длине аксона, находяще­гося в гладко мышечной ткани. Медиатор диффундирует на не­которое расстояние, встречая на своем пути мышечные клетки и возбуждая их. Ионные каналы с рецепторами к медиатору на поверхности мембраны гладкомышечных волокон имеют низ­кую плотность.

Гладкие мышцы сокращаются и расслабляются значительно медленнее, чем поперечнополосатые. Саркоплазматический ретикулум в клетках гладких мышц имеет более простое строение. Он представлен всего лишь гладкими плоскими пузырьками, располо­женными вблизи внутренней поверхности клеточной мембраны. Поэтому поверхностная мембрана гладкомышечных клеток способ­на выполнять кальцийрегулирующую функцию, которую осущест­вляет система Т-трубочек в отношении мембраны саркоплазмати-ческого ретикулума в поперечнополосатых мышечных волокнах. Ионы кальция с помощью активного Са2+-насоса постоянно выво­дятся через мембрану, в результате чего внутриклеточная концен­трация этого иона в покоящейся мышце поддерживается на доста­точно низком уровне. Потенциалы действия вызывают сильный входящий ток ионов кальция и, следовательно, наиболее сильные сокращения гладкомышечной клетки, поскольку интенсивность мышечного напряжения находится в градуальной зависимости от внутриклеточной концентрации ионов кальция.

Механизм регуляторной функции ионов кальция в сокращении гладкой мышцы отличается от такового в поперечнополосатой мышце. В гладкой мышце отсутствует белок тропонин, но имеется другой белок, напоминающий по строению тропонин, получив­ший название «кальмодулин». Ионы кальция соединяются с кальмодулином. Это соединение образует комплекс с протеинкиназой, активируя ее. В свою очередь, активированная протеинки-наза фосфорилирует участок, расположенный на миозиновой го­ловке. Фосфорилированная миозиновая головка присоединяется к актину, и благодаря поперечным мостикам актиновые и миозиновые нити скользят друг относительно друга.

Ионы Са2+ соединяются с кальмодулином – это соединение соединяется с протеинкиназой – активация протеинкиназы – протеинкиназа фосфолирирует миозиновую головку – она соединятся с актином – происходит скольжение.