Добавил:
ac3402546@gmail.com Направление обучения: транспортировка нефти, газа и нефтепродуктов группа ВН (Вечерняя форма обучения) Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

учебники / Короновский Н.В. «‎Общая геология‎» 3-ие издание

.pdf
Скачиваний:
1014
Добавлен:
31.05.2021
Размер:
38 Mб
Скачать

Глава 14. Геологическая деятельность океанов и морей

331

Вобласти маргинальных фильтров происходит весьма значительное накопление осадочного материала, под весом которого земная кора прогибается. Следует отметить, что глобальные колебания уровня моря

внедавнем геологическом прошлом переводили рыхлые отложения шельфа и маргинальных фильтров путем процесса лавинной (т. е. очень быстрой) седиментации к подножию континентального склона, что подтверждается глубоководным бурением и геофизическими исследованиями. Многочисленные исследования А. П. Лисицына показали, что за пределы шельфов и маргинальных фильтров в океан проникает не более 2–16 % элементов стока. Почти весь сносимый с суши материал оседает и улавливается этими участками (фильтрами), поэтому прежние представления о механическом разносе взвешенных в морской воде частиц, снесеных с суши, в настоящее время не находят подтверждения. Реальный вклад материала речного стока в осадконакопление в океане оказывается в 10 раз ниже, чем предполагалось раньше, и не превышает 1,5 млрд т в год. Следует отметить, что примерно такое же количество материала поступает в океаны за счет эолового и ледового разноса, но концентрируется соответственно в разных климатических аридных и полярных зонах.

Глубоководное терригенное осадконакопление обеспечивается за счет разноса материалов размыва суши. Главными процессами при этом, как уже говорилось, являются: транспортировка, отложение и переотложение. Терригенный материал поступает в океаны не только при помощи течения рек, но и за счет таяния айсбергов и попадания на дно ледниковых отложений, содержащихся в айсберге, и разноса пылеватого материала эоловыми процессами. Материал, выносимый реками, как правило, сгруживается на шельфе в сублиторальной или неритовой области и редко выносится в более глубоководные батиальные области континентального склона и тем более абиссальных котловин. Однако отложившийся на шельфе материал может перемещаться в более глубоководные части океана за счет сползания осадков с бровки шельфа, лавинной седиментации и так называемых гравитационных потоков, которые возникают за счет действия силы тяжести. По выражению А. П. Лисицына, материковый склон Мирового океана — гигантская фабрика гравипотоков.

Внастоящее время, по Г. В. Мидлтону и М. А. Хамптону, выделяются 4 типа гравитационнных потоков: 1) турбидные, 2) грязекаменные, 3) зерновые и 4) разжиженного осадка, среди которых наиболее распространен первый тип (рис. 14.43).

Турбидные потоки — это суспензия осадочного материала, отличающаяся от окружающей воды большей плотностью, которая заставляет эту суспензию двигаться в виде потока при наличии даже незначительного уклона, и характеризующаяся сильной внутренней турбулентностью.

332

Часть II. Процессы внешней динамики

Рис. 14.43. Классификация подводных гравитационных потоков (по G. V. Middleton, M. A. Hampton, 1976)

Турбидные потоки переносят огромные массы осадочного материала с мелководного шельфа в область континентального склона, его подножия и даже части абиссальных котловин. Турбидный поток возникает в результате оползания или срыва водонасыщенного, слабо консолидированного осадка. Обладая плотностью в 1,03–1,3 г/см3, поток плотной и тяжелой суспензии начинает двигаться вниз по склону, при этом в его утолщенной фронтальной части развивается избыточное давление, вызванное несколько большей скоростью потока в его хвостовой части. Скорость движения турбидных потоков может достигать 90 км/ч, при этом на огромные расстояния переносится большой объем взвеси, достигающей нескольких килограммов на кубический метр на расстояние в сотню километров и более (рис. 14.44).

Классическим примером был мутьевой поток, вызванный землетрясением 19 ноября 1929 г. в районе Большой Ньюфаундлендской банки. Проложенные в этом месте многочисленные телеграфные кабели из Америки в Европу рвались в определенной последовательности в течение более полусуток, что позволило вычислить скорость турбидного потока, составившую 40–55 км/ч В результате этого потока образовались осадки мощностью до 1 м на площади более чем 100 тыс. км2, а расстояние, которое прошел поток, оценивается в 720 км. Все это было установлено благодаря исследованиям американских океанологов Б. Хизена и М. Юинга.

Турбидные потоки возникают в результате землетрясений, вызывающих оползание илов; понижения уровня моря; возникновения гравитационной неустойчивости илов при накоплении их на склоне и достиже-

Глава 14. Геологическая деятельность океанов и морей

333

Рис. 14.44. Гидравлика турбидных потоков по лабораторным экспериментам в лотках. А. Волна турбидного потока, наблюдавшаяся в горизонтальном канале после спуска суспензии из шлюзовой камеры в одном его конце. Скорость головной части потока V зависит от толщины головной части (d2), разности плотностей суспензии в турбидном потоке и воды над ним (∆ρ), плотности воды ρ и ускорения силы тяжести g. Б. Стационарный однородный турбидный поток вниз по склону g. Средняя скорость потока u зависит от толщины потока d, разности плотностей, сил трения на границе с дном (fо) и с вышележащей водой (f1). В. Характер движений внутри и вокруг головной части турбидного потока. Г. Схема расчленения турбидного потока на головную часть, тело и хвостовую часть (по G. V. Middleton, M. A. Hampton, 1976)

ния определенной мощности. Часто турбидные потоки тяготеют к подводным каньонам, прорезающим континентальный склон и являющимся продолжением речных долин. Турбидные потоки образуют у подножия континентального склона огромные подводные конусы выноса, или фены, распространяющиеся и в область абиссальных котловин.

334

Часть II. Процессы внешней динамики

Из турбидных суспензионных потоков образуются осадочные отложения, называемые турбидитами, игравшие исключительно важную роль в геологическом прошлом и образующие мощные ритмично построенные так называемые флишевые толщи пород, широко развитые на пассивных континентальных окраинах (рис. 18 на цветной вклейке).

Наиболее важным свойством турбидитов является их градационная слоистость, образующаяся при постепенном осаждении из суспензии сначала крупных частиц, а затем все более и более мелких, вплоть до глинистых размером 0,01 мм (рис. 14.45). Таким образом формируется цикл Боума, или ритм (рис. 14.46). При новом турбидном потоке цикл повторяется, и так может происходить сотни тысяч раз, в результате чего образуется флишевая толща пород с многократно повторяющимися ритмами.

Рис. 14.45. Образование градационной слоистости во флишевых отложениях. 1 — турбидный поток в движении, частицы разного размера взвешены в нем;

2 — поток остановился, и начали опускаться более крупные частицы; 3 — в верхней части потока еще держится глинистая «муть»; 4 — потом осаждается и она.

Образуется один ритм

Среди турбидитов различают проксимальные, относительно грубые, образовавшиеся недалеко от источника возникновения потока, и дистальные, отложившиеся дальше всего от источника и поэтому более тонкие. Полный ритм, или цикл, Боума может характеризоваться выпадением из разреза каких-либо его членов вследствие местных размывов. Турбидные потоки

Глава 14. Геологическая деятельность океанов и морей

335

Рис. 14.46. Идеализированная последовательность слоев турбидита, часто именуемая циклом Боума (от А. Боума, впервые установившего его связь

с турбидным потоком). Справа дана интерпретация режима потока (по G. V. Middleton, M. A. Hampton, 1976)

могут выносить в пределы абиссальных котловин обломки мелководных бентосных организмов. Быстрое движение турбидных потоков оказывает эродирующее действие на дно, прорезая каньон и вынося из них материал. Турбидные потоки, как движущаяся водная масса в воде, подвержены действию сил Кориолиса, отклоняясь от своего первоначального направления. Существуют огромные каньоны, например Жемчуг и Прибылова в Беринговом море, одни из крупнейших в мире, которые врезались во время низкого стояния уровня океана в позднем кайнозое, а потом вновь заполнялись осадками.

Грязекаменные потоки представляют собой плотную массу различных по размеру частиц, насыщенных водой, поддерживаемую в плавучем состоянии за счет высокой плотности потока, напоминающего сель на суше. Считается, что глинистые минералы в воде, образуя раствор, поддерживают массу за счет сил сцепления и не дают опуститься на дно крупным частицам, в том числе размером с гальку и даже валун. Грязекаменные потоки обычно развиваются вдоль подножий континентального склона, например в Атлантике у Африканского континентального склона.

336

Часть II. Процессы внешней динамики

Зерновые потоки возникают при течении песка по склонам или в подводных каньонах, причем подвижность зерновой массы обеспечивается давлением зерен друг на друга, что не дает возможности им осаждаться, и зерна находятся во взвешенном состоянии. Песчаный материал при этом волочится вниз по склону и быстро оседает, когда зерновой поток прекращает свое движение.

Поток разжиженного осадка возникает в случае прохождения воды через еще не консолидированный осадок, при этом он сам становится вязкой жидкостью. В случае с песчаным осадком поровое давление начинает превышать вес столба воды — гидростатическое давление, каждое зерно поддерживается поровым давлением воды как бы во взвешенном состоянии и вся масса получает возможность двигаться при минимальном уклоне. Как только поровое давление уменьшается, поток разжиженного осадка сразу прекращает свое движение.

Глубоководные осадки, развитые в пределах абиссальных котловин, глубже 4 тыс. м, представлены главным образом красными и коричневыми пелагическими глинами, окрашенными оксидами железа. Эти тонкие полигенные осадки состоят не только из глинистых минералов эолового происхождения, но и из очень мелких зерен полевых шпатов, кварца, пироксенов, метеоритной пыли, вулканических частиц, а также обломков костей рыб, зубов, мельчайших марганцевых конкреций и монтмориллонитовых глин. Красные океанические глины накапливаются очень медленно, около 1 мм за 1000 лет, а их генезис связан как с выносом глинистых минералов с суши и переотложением их в океане, так и с образованием глинистых минералов за счет соединений кремния и алюминия и их взаимодействия в морской воде.

Вулканогенные осадки образуются за счет вулканических извержений на океанском дне (аутигенные осадки); за счет переотложения ранее сформировавшихся вулканогенных образований и путем осаждения вулканических пеплов и туфов, выброшенных при эксплозивных извержениях вулканов на суше.

Эксплозивные извержения вулканов на островных дугах и активных континентальных окраинах вносят весомый вклад в океанские осадки, поставляя в них тефру. В глубоководных осадках присутствует в основном вулканический пепел — мельчайшие частицы стекла, которые при мощных извержениях способны выпадать на огромных пространствах земного шара, как, например, при взрыве вулкана Кракатау в Зондском проливе в 1883 г., когда пепел, выброшенный в стратосферу, находился в ней три года, вызывая эффект серебристых облаков. До 20 % вулканогенного материала находится в современных осадках Тихого и Атлантического океанов, связанных с несколькими сотнями ак-

Глава 14. Геологическая деятельность океанов и морей

337

тивных вулканов, извергавшимися за последние 500 лет и давшими около 330 км2 тефры.

Извержения, происходящие непосредственно на дне океана, например в рифтовых зонах срединно-океанских хребтов, поставляют очень мало пирокластики, т. к. высокое гидростатическое давление не дает развиться эксплозивному процессу. А. П. Лисицын выделяет три главных типа выпадения пеплов: 1) локальный (несколько сотен километров от источника); 2) тропосферный (до нескольких тысяч километров от источника) и 3) глобальный, охватывающий всю поверхность земного шара и характеризующийся очень мелкими (0,3–1 мкм) пепловыми частицами.

Выпавший на дно пепел может переотлагаться донными течениями и турбидными потоками, а ветер и льды разносят тефру далеко от мест извержения.

Металлоносные осадки, образующиеся из высокотемпературных рудоносных растворов в рифтовых зонах океанов, были открыты совсем недавно. Значение этого открытия для геологов трудно переоценить, т. к. впервые была получена возможность наблюдать образование современных медно-колчеданных месторождений, аналоги которых так широко распространены в разновозрастных складчатых областях, например на Урале.

Только за последние 15–20 лет стало возможным непосредственно исследовать участки выхода высокотемпературных рудоносных растворов на поверхность океанического дна с помощью автономных подводных обитаемых аппаратов — маленьких глубоководных подлодок, хотя сведения о металлоносных осадках поступали и раньше (рис. 19 на цветной вклейке).

Эти осадки развиты вблизи активных спрединговых хребтов в рифтовых зонах и характеризуются повышенным содержанием железа, марганца и других элементов. В настоящее время известно более 100 активных гидротермальных полей, которые окружены металлоносными осадками (рис. 14.47). Большая их часть сосредоточена в пределах Во- сточно-Тихоокеанского срединно-океанического хребта и в ряде других мест.

Особый интерес представляют собой металлоносные осадки Красного моря, которое является молодым позднекайнозойским рифтом с низкими скоростями спрединга, до 1,6 см/год. В его центральной, наиболее молодой рифтовой зоне известен ряд впадин, в том числе знаменитая впадина Атлантис II, в которых находятся высокотемпературные (+66 °С) рассолы с высокими концентрациями Fe, Mn, Zn, Cu, Pb, Co, Ba, Li, Si.

Рассолы впадины Атлантис II обладают очень низким содержанием кислорода, а в придонном слое он полностью отсутствует. Рассолы появляются в связи с тем, что в этом районе известны горизонты

338

Часть II. Процессы внешней динамики

Рис. 14.47. Глобальное распределение сульфидных рудных отложений на глубоководных гидротермальных полях. 1 — впадина Атлантис II в Красном море; 2 — Лаки Страйк (САХ); 3 — Брокен Спур (САХ); 4 — ТАГ (САХ); 5 — Снейк Пит (САХ); 6 — г. Магик (хр. Эксплорер); 7–8 — хр. Эндевер; 9 — Осевой вулкан (хр. Хуан де Фука); 10 — Клефт (хр. Хуан де Фука); 11 — Клифф (хр. Горда); 12 — Неска и Сеска (трог Эсканаба, хр. Горда); 13 — Гуаймас (Калифорнийский залив); 14 — 21° с. ш. (ВТП); 15 — 11–13° с. ш. (ВТП); 16 — Вентура (ВТП); 17 — 86° з. д. (Галапагосский центр спрединга); 18 — г. Макдональд; 19 — г. Лойхи (Гавайи); 20 — бассейн Лау; 21 — северный бассейн Фиджи; 22 — западный бассейн Вудларк; 23 — бассейн Манус; 24 — Алиса (Марианский трог); 25 — Джада (трог Окинава); 26 — вулкан Пийпа; 27 — Сонне (Центральный Индийский хребет)

каменной соли миоценового возраста. Во впадину поступают гидротермальные растворы в объеме до 3 тыс. м3/ч, а их температура на выходе оценивается более чем в +300 °С. В течение года в осадках накапливается до 1500 т железа и 27 т марганца. Гидротермальные растворы представляют собой морские воды, проникшие в базальты, профильтрованные сквозь них, нагретые и вышедшие на поверхность океанического дна рифта в виде горячих, уже рудоносных растворов.

Гидротермальные постройки имеют вид холмов или башен высотой в несколько десятков метров, на вершинах которых возвышаются трубообразные постройки высотой 3–5 м, напоминающие печные трубы (рис. 14.48). Из них выходят гидротермальные струи черного или белого цветов, за что эти сооружения получили наименование курильщиков. На их вершине находятся отверстия, напоминающие кратеры, из которых поднимается густая взвесь из рудных компонентов. На поверхности конусовидных башен, сложенных плотным шлакоподобным материалом, наблюдаются, как наросты на березе, термофильные бактериальные маты,

Глава 14. Геологическая деятельность океанов и морей

339

скопления различных бактерий, прикрепленных к субстрату, а также группы своеобразных организмов — гигантских погонофор, вестиментифер — Riftia pachyptila, напоминающих крупные и длинные, более 1,5 м, трубки.

I

II

III

 

Рис. 14.48. Строение «черного курильщика» — современной «фабрики руды» на дне океана (I). Разные типы «курильщиков» (по А. П. Лисицыну и др., 1990) (II).

(III)Галапагосский рифт. Цепочки крупных двустворок Caliptogenos вблизи трещин

у«черных курильщиков», из которых просачивается разбавленный гидротермальный

раствор (по данным Л. Лобье)

340

Часть II. Процессы внешней динамики

Это есть не что иное, как большие трубчатые черви, верхняя часть которых окрашена в ярко-красный цвет, так называемый султан, а сама трубка обладает перламутрово-белой окраской. Вокруг построек нередко в изобилии раскиданы матово-белые, очень крупные, до 25 см в длину, раковины двустворчатых моллюсков — калиптогенов (Сalyptogena magnifica), а также кольчатый червь (Alvinella pompejana), названный помпейским, потому что он непрерывно посыпается, как пеплом, частицами серы из курильщиков.

Черная взвесь «курильщиков» содержит в основном Fe2+, FeS, Mn2+, а белая — Mn, He, CH4, Fe. Когда эти взвеси выходят из трубы, они разносятся в виде шлейфа на большое расстояние от места появления, формируя тем самым поле металлоносных осадков (рис. 14.49, рис. 20 на цветной вклейке).

Рис. 14.49. Разрез верхней части «черного курильщика». «Черный дым» — взвесь сульфидов Fe, Cu, Zn — возникает при охлаждении гидротермального раствора.

Передовой край постройки сложен белым ангидритом, образующимся при контакте морской воды с горячим гидротермальным раствором. В дальнейшем ангидрит замещается сульфидами металлов. 1 — «черный дым»; 2 — зона нарастания ангидрита; 3 — включения ангидрита; 4 — полиметаллические сульфиды; 5 — гидротермальный флюид с температурой около 400 °С; 6 — боковое отверстие «курильщика»

Соседние файлы в папке учебники