Добавил:
ac3402546@gmail.com Направление обучения: транспортировка нефти, газа и нефтепродуктов группа ВН (Вечерняя форма обучения) Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

учебники / Короновский Н.В. «‎Общая геология‎» 3-ие издание

.pdf
Скачиваний:
1014
Добавлен:
31.05.2021
Размер:
38 Mб
Скачать

Глава 12. Геологическая деятельность снега, льда и ледников

251

редко с отдельными гальками и валунами. Эти отложения формировались в озерных котловинах, расположенных на поверхности ледника, и после таяния последнего оказались, как и озы, спроектированными на поверхность коренных пород.

Озерно-ледниковые, тонкослоистые (ленточные) отложения, состоящие из многократно чередующихся глинистых и песчанистых слоев, образовались в приледниковых озерах. Когда таяние более бурное, например летом, в озеро сносится относительно грубый материал, а зимой в условиях ослабленного водотока накапливаются глины. Количество слоев в ленточных озерных отложениях (варвы) говорит о времени формирования озера. Все упомянутые выше отложения, связанные с действием талых ледниковых вод, иначе называются флювиогляциальными, что указывает на их водно-ледниковое происхождение.

Плавучие льды, или айсберги, разносятся течениями на большие расстояния от кромки ледников. Один из айсбергов погубил печально знаменитый пароход «Титаник». На плавучих льдах находилось много обломочного материала, который по мере их таяния откладывался на океанском дне. В шельфовых ледниках, занимающих большие пространства, как, например, ледник Росса в Антарктиде, площадью больше 800 тыс. км2 и мощностью до 200 м, благодаря волнению вод с краев откалываются столовые айсберги с отвесными уступами. Длина таких айсбергов может превышать 100 км, и они десятилетиями плавают в океанах, постепенно раскалываясь и подтаивая, представляя большую опасность для судоходства.

Откалываясь от края шельфовых ледников, айсберги провоцируют накопление на дне мощных оплывающих валунно-глинистых отложений, формирующих мореноподобные толщи.

12.5. ОЛЕДЕНЕНИЯ В ИСТОРИИ ЗЕМЛИ

Изучая современные ледники в горах и на материках, установив особенности их строения, механизм передвижения, разрушительную и аккумулятивную работу, можно выявить наличие оледенений в геологической истории Земли, использовав знаменитое выражение Ч. Ляйеля: «Настоящее — ключ к прошлому».

18–20 тыс. лет назад облик поверхности Земли в Северном полушарии был совсем иным, чем в наши дни. Огромные пространства Северной Америки, Европы, Гренландии, Северного Ледовитого океана были заняты гигантскими ледяными покровами с максимальной мощностью в их центре до 3 км, а общий объем льда превышал 100 млн км3. Это было последнее крупное оледенение, продвинувшееся на Русской равнине почти до широты Москвы, а в Северной Америке — южнее Великих

252

Часть II. Процессы внешней динамики

озер. С тех пор ледники стали отступать, и сейчас лед последнего оледенения сохранился только в Гренландии и на ряде островов Канадской Арктики. В последние 10 тыс. лет, называемые голоценом, окончательный распад ледниковых шапок и их быстрое таяние произошли около 8 тыс. лет назад, когда климат был теплее современного. Этот период соответствовал «климатическому оптимуму». Где-то между 8 тыс.

и5 тыс. лет назад климат стал еще теплее, а в Африке более влажным. Но между 5 тыс. и 3500 годами назад произошло сильное похолодание

иместами возникли новые ледники, что позволило выделить даже «малый ледниковый период». Именно к нему относятся ныне существующие ледники на Кавказе, в Альпах, на Памире, в Скалистых горах Северной Америки и др.

Все эти события произошли с момента окончания максимального продвижения ледников за последние 18 тыс. лет. Но в четвертичном периоде, начиная примерно с 2 млн лет тому назад, достоверно выделяется не менее четырех ледниковых, или криогенных, эпох, следы которых обнаружены в Евразии и Северной Америке. В начале ХХ в. немецкими геологами А. Пенком и Э. Брюкнером в Альпах были обоснованы четыре крупных оледенения: гюнц (поздний плиоцен), миндель (ранний плейстоцен), рисс (средний плейстоцен) и вюрм (поздний плейстоцен) с двумя стадиями наступания ледников либо с двумя самостоятельными оледенениями. Впоследствии, когда выделялись следы древних оледенений в других местах, им хотя и давали местные названия, но всегда сопоставляли их с Альпами. Трудами многих российских геологов на Русской равнине установлены следы не менее четырех оледенений, в самом общем виде сопоставимых с альпийскими. Такая же картина и в Северной Америке. Изучение керна океанских осадков и льда из Антарктического покрова на предмет соотношения содержания легкого — 16О и тяжелого — 18О изотопов кислорода, как показателя изменений

климата и температуры воды в океанах, позволило выделить те же самые холодные климатические интервалы в тех же самых возрастных границах, что и в Альпах или на Русской равнине. Тем самым были доказаны глобальность климатических изменений за четвертичный период и примерная синхронность оледенений в Северной Америке и Евразии. Однако океанская стратиграфия, т. е. изучение слоев океанских отложений, дает сейчас более точные данные, отличающиеся от классических континентальных, в которые пытаются «втиснуть» ставшие уже привычными представления.

На Русской равнине максимальное продвижение ледников устанавливается в раннюю стадию (днепровскую) среднечетвертичного оледенения или в донскую, языки которого спускались по долине Днепра до Днепропетровска, а по долине Дона южнее Воронежа. Вторая (московская) стадия

Глава 12. Геологическая деятельность снега, льда и ледников

253

оледенения среднего плейстоцена достигала районов южнее Минска и Москвы. Все остальные оледенения имели конечно-моренные гряды севернее (рис. 12.17). Установлены границы оледенений в Западной и Восточной Сибири, где, конечно же, лучше выражены следы последнего оледенения в виде протяженных извилистых конечно-мо- ренных гряд и валов. Огромное количество льда отбирало воду из океана, уровень которого в позднем плейстоцене понизился от 100 до 140 м. Наличие гигантских ледяных покровов в Панарктическом регионе некоторые геологи ставят под сомнение, что заставляет искать новые фактические данные, подтверждающие либо опровергающие классическую схему.

Рис. 12.17. Схема границ распространения московского оледенения (по И. Н. Чукленковой). 1–8 — варианты проведения границ (конечно-моренных гряд),

по данным разных авторов. 9 — граница распространения валдайского оледенения

Ледниковые покровы последнего оледенения вместе с Панарктическим ледником, по мнению М. Г. Гроссвальда, создали непреодолимое препятствие для рек, текущих в северном направлении, например для Северной Двины, Мезени, Печоры, Иртыша, Оби, Енисея и др. (рис. 12.18). Вследствие этого перед фронтом покровного ледника возникли огромные подпрудные приледниковые озера, которые искали пути для стока в южном направлении (рис. 12.19). И такие пути в виде хорошо сохранившегося грядово-ложбинного рельефа, ориентированного в субширотном направлении, были найдены во многих местах Западной Сибири, Приаралья и

254

Часть II. Процессы внешней динамики

Северного Прикаспия. Временами происходили катастрофические прорывы этих приледниковых озер, а также, возможно, озер из-под ледниковых покровов «теплого» типа. Широкие, плоскодонные ложбины стока, например в древней реке на месте современных Манычских озер в Предкавказье, пропускали до 1000 км3 в год воды. Этот расход сильно менялся по сезонам. Когда ледниковые покровы начали таять и отступать, многие ложбины стока талых ледниковых вод были унаследованы речными системами. Следует подчеркнуть тесную связь формирования, наступания и таяния ледниковых покровов с колебаниями уровня океана, который очень чутко реагировал на «отбор» и поступление в него воды за счет роста или таяния ледников.

Рис. 12.18. Максимальное распространение ледникового покрова 20 тыс. лет назад (ранневалдайское оледенение). Стрелками показано движение льда. Точки — приледниковые озера (по М. Г. Гроссвальду)

Современные расчеты, произведенные И. Д. Даниловым, показывают, что в конце позднего плейстоцена, во время последнего максимального оледенения, площадь, занятая льдом в Северном полушарии, не превышала 6 млн км2, а объем льда — 7–8 млн км3, в то время как подземное оледенение (вечная мерзлота) охватывало площадь до 45 млн км2 при объеме более 1 млн км3 льда. В обоих полушариях

Глава 12. Геологическая деятельность снега, льда и ледников

255

Рис. 12.19. Конечно-моренные пояса, направления движения льда и ледниковоподпрудные озера европейской части СССР в эпоху последнего оледенения (по Х. Арсланову, А. Лаврову и Л. Потапенко). Ясно видно, что лед поступал со стороны Баренцева и Карского морей: 1 — границы оледенения, максимальная из стадий отступания; 2 — направления движения льда; 3 — подпрудные озера;

4 — каналы сброса талых вод (спиллвеи); 5 — пункты радиоуглеродного датирования ледниковых (а) и озерных (б) отложений. Цифрами показаны древнеозерные уровни

объем плавучих льдов составлял 45–50 млн км3. Вполне естественно, что Великие четвертичные оледенения, какими бы они ни были по своим размерам, оставили намного больше следов, чем более древние. Тем не менее в истории Земли установлено несколько довольно продолжительных эпох, во время которых отмечались похолодание и развитие ледников (рис. 12.20). Признаки, по которым реконструировались ледники, близки между собой. Это развитие тиллитов (древних уплотненных и метаморфизованных морен), тиллоидов (образований, напоминающих морены), эрратических валунов с типичной ледниковой

256

Часть II. Процессы внешней динамики

штриховкой, бараньих лбов и курчавых скал, ленточных глин и других явно ледниковых или водно-ледниковых (флювиогляциальных) отложений.

млн лет

млрд лет

Рис. 12.20. Основные криогенные (ледниковые) эпохи в истории Земли (черные)

Следы наиболее древнего оледенения зафиксированы в отложениях раннего протерозоя в Канаде, на Балтийском щите (2,5–2 млрд лет), причем обращает на себя внимание длительность интервала 400 млн лет, в пределах которого обнаруживаются предположительно ледниковые отложения. Более молодая ледниковая эпоха фиксируется в слоях позднего рифея и венда (0,9–0,63 млрд лет) на Русской плите, в Канаде, США, Шотландии и Норвегии, на Северном Урале и в других регионах. Трудно выделить области распространения ледников и реконструировать их морфологию и объем.

В раннем палеозое (ордовик-силур) в интервале 0,46–0,42 млрд лет установлены следы оледенения в Западной Африке, в Сахаре, возмож-

Глава 12. Геологическая деятельность снега, льда и ледников

257

но, в Аргентине, Бразилии, Юго-Западной Африке, Западной Европе, Северной Америке.

Отложения явно ледникового генезиса относятся к временному интервалу 0,35–0,23 млрд лет, что отвечает каменноугольному и пермскому времени позднего палеозоя. Это было время существования огромного суперматерика Пангеи II, когда Южная и Северная Америки, Африка и Евразия, Антарктида, Австралия и Индостан были спаяны вместе, а между Евразией и Гондваной (южные материки) существовал океан Тетис. Области распространения ледников в это время не нуждаются в комментариях. По-видимому, существовал в высоких широтах крупный ледниковый покров или ряд покровов, радиально растекавшихся от центра. Великое позднепалеозойское оледенение достаточно хорошо изучено и документировано.

И, наконец, кайнозойский криогенный период (38 млн лет — ныне), длящийся намного больше, чем хорошо изученные Великие четвертичные оледенения. Начало этого периода относится к интервалу 38–25 млн лет назад, т. е. к позднему олигоцену, когда возникли первые ледники в Антарктиде, прежде всего в Трансантарктических горах и горах Гамбурцева. Всеобщий ледниковый покров сформировался в раннем миоцене (25–20 млн лет назад). В среднем миоцене (15 млн лет назад), по-видимому, сформировался Гренландский ледник, а общее похолодание и резкое ухудшение климатической обстановки четко фиксируются с рубежа 700 тыс. лет. Возможно, этим временем определяется начало четвертичного ледникового периода, а его последним крупным событием было оледенение, начавшееся около 25 тыс. лет назад и последний раз достигшее максимума 18 тыс. лет назад, после чего началась быстрая деградация ледникового покрова, отступавшего со скоростью до 5 км в год.

12.6. ПРИЧИНЫ ВОЗНИКНОВЕНИЯ ОЛЕДЕНЕНИЙ

Выше уже говорилось о том, что в геологической истории Земли, по крайней мере с раннего протерозоя, неоднократно проявлялись холодные эпохи, во время которых возникали обширные ледниковые покровы, чаще всего в пределах ряда материков или их частей. Однако наличие ледникового покрова является только одной из составляющих «ледникового периода», в который входят и мерзлые породы верхней части земной коры, а также огромные массивы плавучих морских льдов. Причины изменения климата в глобальном масштабе, как и причины появления покровных ледников на больших пространствах материков, все еще остаются предметом оживленных дискуссий, хотя поле для маневров сужается, т. к. сейчас достаточно широко стали применяться

258

Часть II. Процессы внешней динамики

математические модели, которым свойственны определенные рамки, выйти за которые не позволяют фактические данные.

Пожалуй, наибольшим признанием в настоящее время пользуется астрономическая теория палеоклимата, возникшая около 150 лет тому назад, когда стало известно о циклических изменениях элементов орбиты Земли.

Наиболее убедительно эта теория была обоснована югославским ученым М. Миланковичем, впервые рассчитавшим изменения солнечной радиации, приходящей на верхнюю границу атмосферы за последние 600 тыс. лет. В русском переводе его книга «Математическая климатология и астрономическая теория колебаний климата» вышла в 1939 г. В ней решающее значение для изменений климата придается циклическим изменениям основных параметров орбиты Земли: 1) эксцентриситет «е» с периодом в 100 тыс. лет; 2) наклон плоскости экватора Земли к плоскости эклиптики (плоскости орбиты Земли) «Е» с периодичностью примерно 41 тыс. лет и 3) период предварения равноденствий, или период процессии, т. е. изменения расстояния Земли от Солнца, который не остается постоянным. В перигелии Земля ближе всего к Солнцу, а в афелии — дальше всего от Солнца. Период процессии равен примерно 23 тыс. лет.

Понятно, что, находясь в афелии, Земля имеет наибольшее удаление от Солнца, поэтому в Северном полушарии лето будет длительным, но прохладным, т. к. Земля будет обращена к Солнцу Северным полушарием. Через полупериод цикла процессии, т. е. через 11 500 лет к Солнцу будет обращено уже Южное полушарие, а в Северном лето будет жарким, но коротким, тогда как зима будет холодной и продолжительной. Подобные различия в климате будут тем резче, чем больше эксцентриситет «е» орбиты Земли. Широтное распределение солнечной радиации на Земле сильнее всего зависит от наклона земной оси по отношению к плоскости эклиптики, т. е. от угла «Е». Наиболее значимые относительные изменения радиации или инсоляции будут происходить в высоких широтах. Если угол наклона «Е» уменьшается, то это в высоких широтах может привести, по М. Миланковичу, к уменьшению солнечной радиации и, следовательно, к увеличению площади ледников или к их возникновению. Для этого процесса, как полагал М. Миланкович, необходимо длительное и прохладное лето, в течение которого не успевал растаять снег, накопившийся мягкой, но короткой зимой.

На мощность, или величину, солнечной радиации влияет эксцентриситет орбиты Земли, но не наклон оси вращения Земли к эклиптике и не прецессия земной оси. В последних двух случаях среднегодовое количество солнечной радиации, поступающей на Землю, остается постоянным. Однако происходит ее перераспределение по сезонам или

Глава 12. Геологическая деятельность снега, льда и ледников

259

широтам. И только изменение эксцентриситета влечет за собой изменение среднегодового количества солнечной радиации, т. к. при орбите, близкой к круговой, расстояние (среднее) от Земли до Солнца наибольшее, а следовательно, солнечная радиация минимальна. Если величина «е» увеличивается, т. е. орбита Земли становится более узкой и поэтому среднее расстояние от Земли до Солнца уменьшается, то солнечная радиация возрастает. М. Миланкович построил инсоляционные (радиационные) диаграммы, на которых показал изменение солнечной радиации во времени для различных географических широт.

Впоследствии были установлены некоторые разночтения этой кривой с кривыми, полученными по изотопно-кислородным данным при изучении донных осадков океанов. Но в целом гипотеза М. Миланковича довольно аргументированно объясняет возникновение великих четвертичных оледенений.

В то же время выявляется еще целый ряд факторов, как экзогенных, так и эндогенных, которые могут вызывать климатические изменения, вместе с изменениями орбитальных параметров Земли, наклона ее оси, темпов дегазации планеты. Значительные колебания глобальной температуры приземного слоя атмосферы могут вызываться изменением содержания СО2 и различных аэрозолей в воздухе. Только удвоение СО2 по отношению к современному (0,03 %) способно повысить температуру воздуха на 3 °С из-за парникового эффекта, открытого в 1824 г. французским математиком Ж. Фурье, который, пропуская на поверхность Земли коротковолновую солнечную радиацию, нагревающую поверхность Земли, одновременно задерживает тепло, отраженное от земной поверхности, тем самым нагревая приземный слой воздуха. Расчеты не дают ясного ответа на вопрос, на сколько надо уменьшить содержание СО2 в атмосфере, чтобы наступило сильное похолодание. Изучение содержания СО2 в керне льда из глубоких скважин в Антарктиде показало, что во время максимума валдайского позднеплейстоценового оледенения оно было на 25 % ниже, чем в голоцене, т. е. в последние 10 тыс. лет. За последние 100 лет средняя температура на земном шаре возросла на 0,6–0,8 °С. Наблюдается четкая корреляция между ростом содержания СО2, СН4 и других парниковых газов и температурой (рис. 12.21). Виноваты ли в этом техногенные процессы, пока остается не очень ясным, хотя почти все исследователи склоняются к такой зависимости. Повышение температуры привело к очень быстрой и повсеместной деградации ледников. Например, самый крупный ледник, в Африке на горе Кения, уменьшился на 92 %, а на горе Килиманджаро — на 82 %; в Гималаях ледники резко сокращаются, так же как в Альпах, на Кавказе, где за последние 100 лет ледники уменьшились на 50 %. В Гренландии истончается ледяной щит.

На Большом Кавказе за последние 150 лет ледники сильно уменьшились как в длину, так и по мощности (рис. 12.22, 12.23).

Рис. 12.21. Изменения некоторых параметров приземной атмосферы.

1 — температура; 2 — содержание углекислого газа; 3 — содержание метана. По разным источникам

Соседние файлы в папке учебники