Добавил:
Просто выложу некоторые труды по переработке информации, для ознакомительных целей, может кому пригодится для подготовки, как и мне. Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
сопромат.docx
Скачиваний:
19
Добавлен:
20.12.2020
Размер:
1.25 Mб
Скачать

35. Центральное растяжение-сжатие

Растяжением - сжатием называют такой вид нагружения стержня, при котором в его поперечных сечениях возникает только один внутренний силовой фактор - продольная (нормальная) сила N (растягивающая или сжимающая); все остальные внутренние силовые факторы при этом равны нулю. Этот вид нагружения при работе испытывают болты, шпильки, шатуны, штоки амортизаторов, буксирные тросы, тросы грузоподъемников, штанги механизмов газораспределения и многие другие детали автомобильной техники.

При расчетах после определения величин продольных сил по сечениям строится график изменения внутренних силовых факторов по длине данного стержня - эпюра продольных сил.

Продольная сила в каком-либо сечении стержня численно равна (а по направлению противоположна) сумме проекций на ось Z всех внешних сил, действующих на отсеченную часть стержня: N=1, (F°mc).

Правило знаков при построении эпюр продольных сил

Продольную силу N принято считать:

-положительной, если она направлена от сечения (растягивающая);

-отрицательной, если эта сила направлена к сечению (сжимающая).

36. Закон Гука при растяжении-сжатии

Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году.

Закон Гука при растяжении и сжатии справедлив лишь в определенных пределах нагружения и формулируется так: нормальное напряжение прямо пропорционально относительному удлинению или укорочению.

Математически закон Гука можно записать в виде равенства: 

Коэффициент пропорциональности Е характеризует жесткость материала, т. е. его способность сопротивляться упругим деформациям растяжения или сжатия, и называется модулем продольной упругости или модулем упругости первого рода или модулем Юнга. Модуль упругости и напряжение выражаются в одинаковых единицах - Паскалях (Па).

Значения Е, МПа, для некоторых материалов:

 

Чугун - (1,5 ¸ 1,6) .105

Сталь - (1,96 ¸ 2,16) .105

Медь - (1,1 ¸ 1,3) .105

Сплавы алюминия - (0,69 ¸ 0,71) .105 

Если в формулу закона Гука подставим выражения     , то получим:

Произведение ЕА, стоящее в знаменателе, называется жесткостью сечения при растяжении и сжатии; оно характеризует одновременно физико-механические свойства материала и геометрические размеры поперечного сечения бруса.

Отношение   называется жесткостью бруса при растяжении или сжатии.

Приведенные выше формулы закона Гука применимы только для брусьев или их участков постоянного поперечного сечения, изготовленных из одного материала и при постоянной продольной силе.

Для бруса, имеющего несколько участков, отличающихся материалом, размерами поперечного сечения, продольной силой, изменение длины всего бруса равно алгебраической сумме удлинений и укорочений отдельных участков: 

37. Механические и пластические свойства материалов

Механические свойства материалов, совокупность показателей, характеризующих сопротивление материала воз действующей на него нагрузке, его способность деформироваться при этом, а также особенности его поведения в процессе разрушения. Механические свойства характеризуются способностью материала сопротивляться всем видам внешних воздействий с приложением силы. По совокупности признаков различают прочность материала при сжатии, изгибе, ударе, кручении и т. д., твердость, пластичность, упругость, истираемость. Прочность — свойство материала сопротивляться разрушению под действием напряжений, возникающих от нагрузки. Материалы, находясь в сооружении, могут испытывать различные нагрузки. Наиболее характерными для строительных конструкций являются сжатие, растяжение, изгиб и удар.  Прочность строительных материалов характеризуется пределом прочности. Пределом прочности (Па) называют напряжение, соответствующее нагрузке, вызывающей разрушение образца материала.На прочность материала оказывают влияние не только форма и размер образца, но и характер его поверхности и скорость приложения нагрузки. Прочность зависит также от структуры материала, его плотности (пористости), влажности, направления приложения нагрузки. В материалах конструкций допускаются напряжения, составляющие только часть предела прочности, таким образом, создается запас прочности. При установлении величины запаса прочности учитывают неоднородность материала — чем менее однороден материал, тем выше должен быть запас прочности. При установлении коэффициента запаса прочности важными являются агрессивность эксплуатационной среды и характер приложения нагрузки.  Твердость — способность материала сопротивляться проникновению в него другого более твердого тела. Твердость не всегда соответствует прочности материала. Твердость металлов и пластмасс определяют вдавливанием стального шарика. От твердости материалов зависит их истираемость. Это свойство материала важно при обработке, а также при использовании его для полов, дорожных покрытий.

Упругость — свойство материала восстанавливать после снятия нагрузки свою первоначальную форму и размеры. Пределом упругости считают напряжение, при котором остаточные деформации впервые достигают некоторой очень малой величины (устанавливаемой техническими условиями на данный материал). Пластичность — свойство материала изменять свою форму под нагрузкой без появления трещин (без нарушения сплошности) и сохранять эту форму после снятия нагрузки. Все материалы делятся на пластичные и хрупкие. К пластичным материалам относят сталь, медь, глиняное тесто, нагретый битум и т. п. Хрупкие материалы разрушаются внезапно без значительной деформации. К ним относят каменные материалы. Хрупкие материалы хорошо сопротивляются только сжатию и плохо — растяжению, изгибу, удару.

Пластические свойства материалов важны прежде всего при их формовании, в то время как прочность и, конкретно, предел текучести помогают конструкторам правильно рассчитать размеры элементов конструкций. При расчетах в основу кладется то допустимое напряжение, которое не должно быть превышено при воздействии силы на какую-либо строительную деталь. Это допустимое напряжение находится на графике ниже предела текучести, то есть в области упругого поведения материала, что обеспечивает безопасность. Пластические свойства материалов определяются их текучестью. Механизм течения материала состоит в скольжении его частиц друг относительно друга по поверхности скольжения. Характеристики пластичности. Пластичность при растяжении конструкционных материалов оценивается удлинением:

или сужением:

при сжатии — укорочением:

(где h0 и hk — начальная и конечная высота образца), при кручении — предельным углом закручивания рабочей части образца , рад или относительным сдвигом  = r(где r — радиус образца). Конечная ордината диаграммы деформации (точка k на рис. 2) характеризует сопротивление разрушению металла Sk, которое определяется

(Fk — фактическая площадь в месте разрыва).