Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспекты лекций.doc
Скачиваний:
159
Добавлен:
07.02.2015
Размер:
2.87 Mб
Скачать

§ 3. Производные и дифференциалы высших порядков

Пусть функция y=f(x) дифференцируема на некотором отрезке [ab]. Значение производной f'(x), вообще говоря, зависит от x, т.е. производная f'(x) представляет собой тоже функцию переменной x. Пусть эта функция также имеет производную. Дифференцируя ее, получим так называемую вторую производную от функции f(x).

Производная от первой производной называется производной второго порядка или второй производной от данной функции y=f(x) и обозначается y''или f''(x). Итак, y'' = (y')'.

Например, если у = х5, то y'= 5x4, а y''= 20x4.

Аналогично, в свою очередь, производную второго порядка тоже можно дифференцировать. Производная от второй производной называется производной третьего порядка илитретьей производной и обозначается y'''или f'''(x).

Вообще, производной n-го порядка от функции f(x) называется производная (первая) от производной (n – 1)-го порядка и обозначается символом y(n) или f(n)(x): y(n) = (y(n-1))'.

Таким образом, для нахождения производной высшего порядка от данной функции последовательно находят все ее производные низших порядков.

Примеры.

  1. Найти производную четвертого порядка функции y= ln x.

.

  1. .

  2. Найти производную n-го порядка функции y = ekx.

y'= k·ekxy''= k2·ekxy''' = k3·ekx, …,y(n) =kn·ekx.

  1. Найти производную n-го порядка функции y = sin x.

Имеем

Выясним механический смысл второй производной. (Механический смысл первой производной – скорость).

Пусть материальная точка движется прямолинейно по закону s=s(t), где s – путь, проходимый точкой за время t. Тогда скорость vэтого движения есть v= s'(t) = v(t), т.е. тоже некоторая функция времени.

В момент времени t скорость имеет значение v=v(t). Рассмотрим другой момент времени tt. Ему соответствует значение скорости v1 = v(tt). Следовательно, приращению времени Δt соответствует приращение скорости Δvv1 – v = v(t + Δt) – v(t). Отношение называется средним ускорением за промежуток времени Δt.

Ускорением в данный момент времени t называется предел среднего ускорения при Δt→0:

.

Таким образом, ускорение прямолинейного движения точки есть производная скорости по времени. Но как мы уже видели, скорость есть производная пути s по времениtv = s'. Учитывая это, имеем:

a = v'(t) = (s')' = s''(t),

т.е. ускорение прямолинейного движения точки равно 2-й производной пути по времени

a = S''(t).

§ 4. Применение дифференциала к приближенным вычислениям

Пусть нам известно значение функции y0=f(x0) и ее производной y0' = f '(x0) в точке x0. Покажем, как найти значение функции в некоторой близкой точке x.

Как мы уже выяснили приращение функции Δyможно представить в виде суммы Δy=dy+α·Δx, т.е. приращение функции отличается от дифференциала на величину бесконечно малую. Поэтому, пренебрегая при малых Δx вторым слагаемым в приближенных вычислениях, иногда пользуются приближенным равенством Δydyили Δy»f'(x0)·Δx.

Т.к., по определению, Δy = f(x) – f(x0), то f(x) – f(x0)f'(x0)·Δx.

Откуда

f(x) ≈ f(x0) + f'(x0)·Δx

Примеры.

  1. y = x2 – 2x. Найти приближенно, с помощью дифференциала, изменение y (т.е. Δy), когда x изменяется от 3 до 3,01.

Имеем Δydy=f'(x)·Δx.

f'(x)=2x – 2 ,f'(3)=4, Δx=0,01.

Поэтому Δy ≈ 4·0,01 = 0,04.

  1. Вычислить приближенно значение функции в точкеx = 17.

Пусть x0= 16. Тогда Δx = x – x0= 17 – 16 = 1, ,

.

Таким образом, .

  1. Вычислить ln 0,99.

Будем рассматривать это значение как частное значение функции y=lnx при х=0,99.

Положим x0 = 1. Тогда Δx = – 0,01, f(x0)=0.

f '(1)=1.Поэтому f(0,99) ≈ 0 – 0,01 = – 0,01.

Пусть имеем функцию y=f(x), где x – независимая переменная. Тогда дифференциал этой функции dy=f'(x)dx также зависит от переменной x, причем от x зависит только первый сомножитель f'(x) , а dx = Δx от x не зависит (приращение в данной точке x можно выбирать независимо от этой точки). Рассматривая dy как функцию x, мы можем найти дифференциал этой функции.

Дифференциал от дифференциала данной функции y=f(x) называется вторым дифференциалом или дифференциалом второго порядка этой функции и обозначается d2y:d(dy)=d2y.

Найдем выражение второго дифференциала. Т.к. dx от x не зависит, то при нахождении производной его можно считать постоянным, поэтому

d2y = d(dy) = d[f '(x)dx)] = [f '(x)dx]'dx = f ''(x)dx·dx = f ''(x)(dx)2.

Принято записывать (dx)2 = dx2. Итак, d2уf''(x)dx2.

Аналогично третьим дифференциалом или дифференциалом третьего порядка функции называется дифференциал от ее второго дифференциала:

d3y=d(d2y)=[f ''(x)dx2]'dx=f '''(x)dx3.

Вообще дифференциалом n-го порядка называется первый дифференциал от дифференциала (n – 1)-го порядка: dn(y)=d(dn-1y)

dny = (n)(x)dxn

Отсюда, пользуясь дифференциалами различных порядков, производную любого порядка можно представить как отношение дифференциалов соответствующего порядка: