Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Fizkolda_otvety.docx
Скачиваний:
81
Добавлен:
08.06.2020
Размер:
1.03 Mб
Скачать

41. Вязкость коллоидных растворов. Зависимость вязкости растворов вмс от pH.

Вязкость - это внутреннее трение жидкости, которое испытывает один слой жидкости относительно другого при истечении. Сила трения f пропорциональна поверхности S и градиенту скорости , т.е.

, (закон Ньютона)

где  («этта») - коэффициент внутреннего трения, который называют вязкостью (динамической вязкостью). Отсюда:

В системе СИ единицей измерения вязкости является [Па×с], часто применяют и несистемную единицу – [], получившую название пуаз [П]; 1 П = 0,1 Па с.

Добавление коллоидных частиц к растворителю с вязкостью Ƞ0 приводит к увеличению вязкости раствора Ƞ. Повышение вязкости есть результат увелечения трения между прилегающими мономолекулярными слоями жидкости, вызванного тем, что частицы крупнее молекул растворителя. Изменение выражают как отношение Ƞ/ Ƞ0, называемое относительной вязкостью Ƞотн.

Вязкость гидрофобного золя зависит от концентрации золя и не зависит от способа его приготовления. Вязкость гидрофобного золя всегда выше вязкости дисперсионной среды.

Относительная вязкость гидрофобных коллоидов описывается уравнением Эйнштейна

где  и 0 - вязкость золя и дисперсионной среды соответственно, - объемная концентрация дисперсной фазы,  - коэффициент, учитывающий форму частиц дисперсионной фазы.

Гидрофильные коллоиды, частицы которых значительно сольватированы (гидратированы), имеют большую вязкость, чем гидрофобные коллоиды равной концентрации. Их вязкость резко возрастает с увеличе­нием концентрации золя. Уравнение Эйнштейна для лиофильных систем принимает вид:

,

где V- объем сольватных оболочек частиц дисперсной фазы.

Суммарный заряд белковой макромолекулы определяется соотношением числа кислот­ных групп (СОО-) и основных (NH3+). Изменяя рН раствора, можно создать такие условия, при которых суммарный заряд белковых молекул будет равен 0. Такое состояние белков называется изоэлектрическим, а рН, при котором оно осуществляется, изоэлектрической точкой (ИЭТ).

Изменяя рН среды, можно влиять на вязкость раствора ВМС. Например, увеличение вязкости жела­тина при уменьшении рН среды (переход в более кис­лую область от изоэлектрической точки) объясняется увеличе­нием положительного заряда белковой молекулы за счет протонирования ней­тральных аминных групп (-NH3+), что сопровождается увеличением гид­ратации и, следовательно, вязкости.

При дальнейшем уменьшении рН, когда прореагируют все нейтральные аминогруппы, ионизация (заряд) молекулы начинает уменьшаться за счет присоединения ионов водорода к карбоксильным анионам. Этот процесс сопровождается уменьшением гидратации, а, следовательно, и вязкости.

При дальнейшем уменьшении рН в сильнокислой среде начинается деструкция белка (кислотный гидролиз), белок начинает распадаться на отдельные аминокислоты.

При увеличении рН от изоэлектрической точки (переход в более щелочную область) происходит увеличение суммарного отрицательного заряда за счет диссоциации карбоксильных групп, что приводит к увеличению отрицательных зарядов на поверхности макромолекулы. Следствием этого, опять-таки, является увеличение гидратации макромолекул и вязкости растворов ВМС. При максимальной вязкости в щелочной области белковая молекула схематически представляется так:

Дальнейшее увеличение рН вызывает уменьшение ионизации макромолекулы за счет отщепления иона водорода от заряженной аминогруппы, что сопровождается уменьшением гидратации и вязкости.

При дальнейшем увеличении рН в сильнощелочной среде начинается деструкция белка (щелочной гидролиз), белок начинает распадаться на отдельные аминокислоты, что сопровождается уменьшением гидратации.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]