Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции / Лекции по географии для абитуриентов / Лекция №6 - Глобальные проблемы человечества.doc
Скачиваний:
847
Добавлен:
22.06.2014
Размер:
356.35 Кб
Скачать

3. Энерго-сырьевая проблема

Суть проблемы – противоречие между все возрастающими потребностями человечества в ресурсах и уменьшением их запасов (в первую очередь это относится к исчерпаемым невозобновляемым ресурсам). Обеспеченность тем или иным видом ресурсов характеризуется показателем ресурсообеспеченности, представляющим собой соотношение между величиной разведанных запасов ресурсов и масштабами их использования. Причем обеспеченность минеральными ресурсами как правило выражается количеством лет, на которые хватит разведанных запасов при их современном использовании, а обеспеченность земельными, лесными, водными ресурсами определяется их запасами в расчете на душу населения.

Минеральные ресурсы

Имеющееся минеральное сырье и его использование как глобальная проблема приобрела в настоящее время новое звучание. За последние 30 лет человечество израсходовало столько же минерального сырья, сколько за всю историю своего существования! Потребности в нем ежегодно возрастают во всех странах. К 2000 г. потребность в меди (принимая уровень 1970 г. за 100%) возросла в 4,8 раза; бокситах и цинке — в 4,2; никеле — в 4,7; нефти — в 5,2; газа — в 4,5 и угле — в 5 раз.

Извлечение из недр полезных ископаемых возрастает в мире в геометрической прогрессии. Например, за четверть века (с 1961 по 1985 г.) нефти и природного газа было потреблено примерно 80 % общего объема их использования за всю историю рода человеческого. Половина каменного угля и железной руды, добытых за последние 100 лет, была использована после 1960 г. Тем не менее в начале XXI в. нельзя ожидать абсолютной нехватки сырья, как того опасались в 1900—1970 гг., поскольку за последние 20—30 лет разведанные мировые запасы большинства видов минерального сырья значительно выросли.

За период с 1950 по 1985 г. запасы бокситов увеличились более чем в 100 раз; марганца и хрома — в 45; кобальта и платинидов — в 15; никеля — в 13; нефти, газа, меди, свинца, железной руды, фосфоритов, калийных солей, алмазов — в 5—8 раз. Однако некоторые виды минерального сырья уже сейчас дефицитны, так как их ресурсная база ограниченна. По данным, опубликованным в 1992 г., продолжительность обеспечения мировых потребностей известными запасами полезных ископаемых (при потреблении на уровне 1992 г.) выглядит следующим образом: железо — 63 года, алюминий — свыше 60 — 70 лет, титан — свыше 300 лет, хром — свыше 50 лет, ванадий — свыше 300 лет, марганец — 170 лет, платана — 90 лет, молибден — 90 лет, медь — 60 лет, кобальт — 25 лет, никель — 100 лет, тантал — 45 лет, вольфрам — 40 лет. По последним данным, дефицитными становятся золото, олово, свинец, вольфрам.

В сложной системе мирового хозяйства и международного разделения труда развивающиеся страны выступают как производители и экспортеры минеральных ресурсов. Развитые страны являются основными их потребителями, основными производителями продукции и отходов, загрязняющих окружающую среду. В США проживает 4,85% населения мира, при этом здесь потребляется треть мировых ресурсов, создается треть мировой продукции и половина всех выбросов в атмосферу.

Пути решения проблемы обеспеченности минеральными ресурсами:

  • создание и использование ресурсосберегающих промышленных технологий;

  • полное извлечение полезных ископаемых из недр Земли (например, коэффициент извлечения нефти при современных способах добычи – 0,25 – 0,45);

  • использование вторичного сырья;

Энергетические ресурсы

Начиная с овладения огнем, человек в своей жизнедеятельности постоянно использовал и другие, кроме пищи, источники энергии, его энергетическая мощь постоянно возрастала.

Если при собирательстве и первобытном рыболовстве он затрачивал на питание мощность в 140 Вт, то при подсечно-огневом земледелии и первобытном скотоводстве — уже 250 — 300 Вт, а при традиционном земледелии и скотоводстве — около 500 Вт. Но самый быстрый рост мощности человеческого хозяйства начался после второй технологической (промышленной) революции XVIII в., когда были разработаны методы применения энергии ископаемого топлива (в первую очередь каменного угля и нефти) в различных технологиях. Затем была повышена эффективность традиционных источников энергии: воды, ветра и солнца. Наконец, в XX в. началось использование ядерной энергии. В целом энерговооруженность человека возросла в тысячи раз, возникла энергетическая цивилизация — цивилизация большой социоприродной энергетики.

В XX в. мощность, используемая человеком на отопление, освещение, транспорт, промышленное и сельскохозяйственное производство, обработку и передачу информации и т.п., достигла в среднем 2 — 3 кВт/чел.

В настоящее время свои энергетические потребности человечество удовлетворяет в основном за счет углеродсодержащих видов топлива (каменного угля, нефти, газа, дров, сланцев, торфа) и урана. С 1973 по 1998 г. глобальное потребление этих энергоносителей возросло в 5 раз.

При сжигании топлива реализуется первичная (тепловая) энергия, которая может быть преобразована в электрическую с определенным коэффициентом полезного действия (40—44% на тепловых электростанциях, где сжигается углеродсодержащее топливо, и 30 — 33% на атомных электростанциях). Выработка одновременно электрической энергии и горячей воды на теплоэлектроцентралях повышает КПД использования первичной энергии до 80%.

Электрическая энергия — основа современной цивилизации. Во всем мире она рассматривается в качестве самого предпочтительного промежуточного вида энергии, универсального (легко преобразующегося в любых количествах в тепло, свет, механическую энергию и т.п.), передаваемого на значительные расстояния и вызывающего наименьшее загрязнение окружающей среды в местах потребления. Подавляющее большинство машин и устройств, которые использует человечество, содержат электрические цепи и соответствующие узлы, работа которых невозможна без электрической энергии.

Ископаемые виды топлива по-прежнему являются доминирующими среди источников первичной энергии, доля угля была максимальной приблизительно в 1920 г., когда он обеспечивал производство более 70% всего потребляемого топлива; доля нефти достигла максимума в начале 70-х годов XX в., составив немногим больше 40%. Предполагается, что природный газ, который загрязняет окружающую среду меньше, чем нефть и уголь, в будущем станет использоваться шире в мировом производстве энергии. Первичная электроэнергия здесь включает в себя энергию, производимую на ГЭС и АЭС.

Разведанные запасы каменного угля оцениваются в 1280 млрд т. При современном уровне его потребления этих запасов хватит на 200 лет.

Запасы нефти — 137 млрд т (1993 г.) (66% на Среднем Востоке), газа — 142 трлн м3 (40 % в Восточной Европе и СНГ, 36 % — в России, 32% — на Среднем Востоке (данные на 1993 г.)).

Прогнозируемые (неразведанные) запасы нефти в 1993 г. оценивались в 100—120 млрд т, газа — 400 трлн м3,

Если открытие новых месторождений природного газа в конечном счете приведет к увеличению его сегодняшних мировых запасов в 4 раза, то современный уровень потребления этого вида топлива сможет оставаться устойчивым до 2230 г. Однако истощение запасов нефти наряду с экологическими проблемами, связанными с использованием угля, может переориентировать мир на потребление газа. Если потребление газа будет продолжать расти нынешними темпами, составляющими 3,3% в год, то запасы, которые в 4 раза превышают известные сегодня, могут быть исчерпаны к 2054 г.

Таким образом, при современном уровне добычи нефти и газа их запасы кончатся после 2050 г. В общем производстве энергии в 1996 г. на долю нефти приходилось 40%, угля — 28, газа — 23%. АЭС создавали 7% энергии, прочие источники энергии давали 2,6%. Легко видеть, что нефть и газ дают примерно 2/3 потребляемой в мире энергии и являются основой экономики современного общества.

Альтернативные источники энергии — энергия ветра, солнца, геотермальная энергия (энергия горячих подземных вод), энергия течений — пока вносят незначительный вклад в мировое производство энергии.

Важную роль в жизни населения развивающихся стран играют дрова. По данным ФАО, в 1998 г. более 2 млрд человек в странах Азии, Африки и Латинской Америки (примерно до 90 % сельского и более 30 % городского населения) для приготовления пищи и обогрева используют древесину. На эти цели в развивающихся странах расходуется 80 % древесины.

В Непале, Гаити, Уганде, Танзании 9/10 энергетических потребностей удовлетворяется за счет древесного топлива, в Нигерии — 82, Судане — 74, Кении — 71, Парагвае — 64, Индонезии и Никарагуа — 50%. В деревнях Гималаев и некоторых районах Африки женщины и дети проводят от 100 до 300 дней в году за сбором хвороста.

Энергетика является одной из наиболее крупномасштабных отраслей промышленного производства. Это основа развития всех отраслей промышленности, определяющих прогресс в целом.

Вместе с тем самым серьезным фактором загрязнения природной среды являются добыча и использование ископаемых энергоносителей, прежде всего нефти, угля и природного газа, обеспечивающего более 90% мировой потребности в энергии.

Рассмотрим экологические характеристики энергетики, основанной на сжигании углеродсодержащих видов топлива (тепловой энергетики), атомной энергетики, гидроэнергетики, использующей энергию падающей воды, и альтернативные ее источники.

Воздействие систем производства, передачи и использования энергии на окружающую среду проявляется в таких процессах и явлениях, как:

1) изъятие территорий для добычи топлива, размещения электростанций и линий электропередачи и захоронения отходов;

2) загрязнение атмосферы и литосферы продуктами сгорания (выбросы в атмосферу, шлаки, радиоактивные отходы и т.п.);

3) тепловое (термическое) загрязнение — сброс тепловой энергии электростанции в окружающую среду и повышение температуры среды;

4) электромагнитное загрязнение — создание электрических, магнитных и электромагнитных полей, создающих угрозу для человека и биосферы ;

5) радиоактивное загрязнение;

6) затопление полезных территорий (в случае гидроэлектростанций);

7) воздействие на климат

8) воздействие на флору и фауну;

9) наведенная сейсмичностъ — возникновение землетрясений при создании энергоустановок, в первую очередь гидроэлектростанций.

Экологические характеристики тепловой энергетики

В типичной тепловой электростанции (ТЭС) происходит сжигание углеродсодержащего топлива, и под действием этого тепла в котле возникает пар с температурой Т= 600 °С, который приводит в движение турбину, связанную с ротором трехфазного синхронного генератора. На зажимах генератора создается напряжение, и электрическая энергия от генератора по линиям электропередачи передается к потребителям. Пар после турбины поступает в конденсатор — теплообменный аппарат, где охлаждается проточной водой, превращается в воду, затем вода с помощью центробежного насоса снова поступает в котел. Необходимость использования проточной воды, которая от пара нагревается, приводит к тепловому загрязнению окружающей среды. Кроме того, создание, передача и использование электрической энергии ведут к электромагнитному загрязнению окружающей среды.

Сжигание углеродсодержащих топлив приводит к появлению двуокиси углерода СО2, которая выбрасывается в атмосферу и способствует созданию парникового эффекта.

Наличие в сжигаемом угле добавок серы приводит к появлению окислов серы, они поступают в атмосферу и после реакции с парами воды в облаках создают серную кислоту, которая с осадками падает на землю. Так возникают кислотные осадки с серной кислотой.

Другим источником кислотных осадков являются окислы азота, которые возникают в топках ТЭС при высоких температурах (при обычных температурах азот не взаимодействует с кислородом атмосферы). Далее эти окислы поступают в атмосферу, вступают в реакцию с парами воды в облаках и создают азотную кислоту, которая вместе с осадками попадает на землю. Так возникают кислотные осадки с азотной кислотой.

ТЭС на угле, вырабатывающая электроэнергию мощностыо 1 ГВт = 109 Вт, ежегодно потребляет 3 млн т угля, выбрасывая в окружающую среду 7 млн т СО2, 120 тыс. т двуокиси серы, 20 тыс. т оксидов азота КО2 и 750 тыс. т золы.

В каменном угле и летучей золе содержатся значительные количества радиоактивных примесей (226Ка, 228Ка и др.). Годовой выброс в атмосферу в районе расположения ТЭС мощностью 1 ГВт приводит к накоплению на почве радиоактивности, в 10 — 20 раз превышающей радиоактивность годовых выбросов АЭС такой же мощности.

Тепловая энергетика требует изъятия территорий для добычи топлива, его транспортировки, размещения электростанций и линий электропередачи, для отвалов со шлаком.

Экологические характеристики атомной энергетики

Важную роль во многих странах играет атомная энергетика. В наиболее распространенных атомных электростанциях на тепловых нейтронах через реактор, в котором находятся тепловыделяющие элементы (ТВЭЛ) с обогащенным ураном (концентрация 235и повышена до 2—4,4%, остальное — 238и), протекает теплоноситель, обычно вода. В результате распада атомов 235 под действием тепловых нейтронов в ТВЭЛах происходит выделение энергии, и температура протекающей воды повышается. Далее эта вода поступает в парогенератор, там возникает пар, который действует на турбину, связанную с ротором синхронного генератора, где генерируется электрическая энергия, направляющаяся по линиям электропередачи к потребителям (как и в случае ТЭС). Пар охлаждается в конденсаторе теплообменника с помощью воды и снова поступает в парогенератор.

В нашей стране построены атомные реакторы двух типов: ВВЭР-1000 — водо-водяной энергетический реактор (18 реакторов) и РБМК-1000 — реактор большой мощности канальный (11 реакторов).

Чтобы представить себе габариты и параметры реактора, приведем эти данные для реактора ВВЭР Нововоронежской АЭС. Реактор имеет диаметр 46 м и высоту около 11 м. Масса корпуса 304 т. Масса урана в активной зоне 66 т. Толщина стенок корпуса для обеспечения биологической защиты 12 см. В качестве теплоносителя используется дистиллированная вода, которая прокачивается через реактор под давлением 100 атм. Вода поступает в реактор при температуре 269 °С и покидает его при температуре 300 °С, нагреваясь на 31 °С. Для управления атомной реакцией в реактор вводятся графитовые стержни. В парогенераторе образуется пар под давлением 47 атм.

В 1997 г. в мире эксплуатировалось 437 энергоблоков АЭС. Электроэнергия на АЭС вырабатывается в 25 странах мира. По абсолютной мощности первое место занимают США (109 реакторов), второе — Франция (56 реакторов), третье — Япония (51 реактор), четвертое — Великобритания (35 реакторов), пятое — Россия (29 реакторов). Удельный вес атомной энергетики в производстве электроэнергии в разных странах составлял: в нашей стране 15 %, в США — 19, Японии — 28, ФРГ — 34, Швеции — 51, Франции — 75, во всем мире — 17 %. В Японии находится крупнейшая в мире АЭС «Фукусима» (10 блоков мощностью 8 ГВт).

Использование ядерного топлива не создает на АЭС двуокиси углерода СО2, т.е. не способствует развитию парникового эффекта, а также не создает окислов серы и азота, приводящих к кислотным осадкам. Теплотворная способность ядерного топлива примерно в 2 млн раз выше, чем у углеродсодержащего топлива.

Если все АЭС в мире заменить на ТЭС (на угле), то потребовалось бы дополнительно 600 млн т угля, в окружающую среду поступило бы 2 млрд т углекислого газа, более 30 млн т оксидов азота, 50 млн т серы, 4 млн т летучей золы. Эксплуатация АЭС позволяет экономить в мире 400 млн т нефти ежегодно. Себестоимость энергии на АЭС в нашей стране в 1,5 — 2 раза меньше, чем на ТЭС. Однако в расчете на единицу производимой электрической энергии АЭС сбрасывают в окружающую среду больше тепла, чем ТЭС в аналогичных условиях. Это связано с меньшим КПД АЭС.

Тепловое загрязнение окружающей среды АЭС и ТЭС может быть весьма большим. В ФРГ рассматривался перспективный план строительства 15 АЭС и 8 ТЭС в бассейне Рейна, однако выяснилось, что когда в действие вступят все станции, температура в ряде притоков Рейна поднимется до 45 °С, и всякая жизнь в них будет уничтожена.

На АЭС в основном используются реакторы на тепловых нейтронах. Таких реакторов 80 % от их общего числа. Они способны использовать только 1 — 2 % энергии урана 235. В настоящее время наиболее перспективной представляется ветвь атомной энергетики, связанная с реакторами на быстрых нейтронах (бридеры), в которых идет деление дешевого изотопа урана 238U, запасы которого достаточно велики.

Однако такие реакторы работают в режиме расширенного производства плутония — основы ядерного оружия. Развитая на данной базе мировая энергетика введет в международный оборот много сотен тонн плутония. Ясно, что возникающая при этом возможность его «утечки» находится в противоречии с интересами безопасности, предотвращения ядерной войны.

Кроме того, наличие большого количества АЭС приведет к переработке (остекловывание отходов и захоронение в глубинных стабильных геологических формациях), транспортировке и захоронению в шахтах или на дне моря больших количеств продуктов радиоактивного распада, способных уничтожить все человечество. Опасность для людей представляют и аварии на АЭС, сопровождающиеся выбросом радиоактивных продуктов распада в атмосферу.

Неизгладимое впечатление на человечество произвела катастрофа на Чернобыльской АЭС. Из-за недостатков конструкции реактора и ошибочных действий персонала в 1 ч 24 мин ночи 26 мая 1986 г. вышел из-под контроля реактор РБМК четвертого блока, раздался взрыв, начался пожар и из 180 т радиоактивного топлива в воздух взлетело около 63 кг радиоактивных продуктов деления, что примерно в 100 раз превышает количество продуктов деления (740 г) в атомной бомбе, взорванной над Хиросимой. Сотни тысяч человек подверглись радиоактивному облучению. В результате территория вокруг Чернобыльской АЭС на 300 лет стала опасной для жизни.

Радиоактивные облака двинулись в Европу через Белоруссию, Польшу до Скандинавии и на юг через Киев, Болгарию, Турцию до Израиля.

Более 2/3 радиоактивного пепла выпало в Белоруссии и покрыло пятую часть ее территории. Смертельной угрозе подвергся генофонд нации. В течение 5 лет после катастрофы зафиксирован рост числа раковых заболеваний щитовидной железы у детей в 22 раза, в 90 раз возросло число больных саркомой (раком крови) среди взрослых. Ущерб, нанесенный Чернобылем Республике Беларусь, превышает 200 млрд дол. В результате Чернобыльской катастрофы загрязнено около 58 тыс. км2 площадей в России, где проживает 2 млн 650 тыс. человек. Наибольшее количество радиоактивно зараженных территорий расположено в Брянской, Калужской, Тульской и Орловской областях.

Кроме того, следует помнить, что АЭС могут быть взорваны с помощью обычного оружия при возникновении военных действий или в результате деятельности террористов; возможно также хищение радиоактивных материалов с АЭС. Разрушение крупной АЭС сопоставимо по последствиям со взрывом ядерной бомбы мегатонной мощности.

В результате отношение мирового общественного мнения к атомной энергетике резко изменилось. Парламент Швеции принял решение о закрытии в 1998 г. первой АЭС, а к 2010 г. —последней АЭС, аналогичное решение принято в ФРГ. Многие государства, в том числе Италия, отказались от строительства новых АЭС. Однако продолжают их возводить Индия, Южная Корея, Япония, Словакия, Россия, Иран, Пакистан, Бразилия, Украина, Чехия, Франция.

С целью повышения безопасности АЭС академик А.Д. Сахаров предлагал строить их под землей, подсчитав, что себестоимость строительства увеличится только на 20%. Во Франции разрабатываются безопасные реакторы с двумя защитными оболочками. Внутренняя рассчитана на давление теплоносителя, возникающее при разрушении корпуса реактора, удержание продуктов деления и ядерного топлива. Наружная предохраняет реактор от внешнего воздействия (падения самолета, террористического акта и т.п.).

Лауреат Нобелевской премии К. Руббиа (Италия) предлагает создать подкритичные (неспособные самостоятельно поддерживать ядерную реакцию) реакторы с ториевым (а не урановым) топливом с ускорителем частиц. При отключении ускорителя ядерная реакция прекращается. В таком реакторе не образуется плутоний — материал для атомных бомб. Запасы тория на Земле огромны, их хватит на многие тысячелетия. В течение 5 лет (с 1997 г.) в Европейском центре ядерных исследований (ЦЕРН, Швейцария) под руководством К. Руббиа предполагается завершить работу по созданию ядерного реактора, способного превращать радиоактивные отходы в нерадиоактивные.

Экологические характеристики гидроэнергетики

Гидроэлектростанции (ГЭС) являются давно используемым источником электроэнергии. При их строительстве река перегораживается плотиной, выше нее создается водохранилище, а вода по трубам направляется к турбинам. Вращающиеся турбины приводят в движение роторы синхронных трехфазных генераторов. На зажимах статоров возникает напряжение, а электрическая энергия по линиям электропередачи направляется к потребителям.

В нашей стране в 1993 г. на ГЭС было выработано 175 млрд кВт • ч |электроэнергии — 18% общего количества, в США — 12%. Гидроэнергия непрерывно возобновляется и будет существовать до |тех пор, пока энергия Солнца поступает на Землю.

Однако работа ГЭС имеет ряд экологических недостатков:

1) затопление земель, пригодных для сельского хозяйства (в частности, при строительстве каскада ГЭС на Волге);

2) изменение климата в зонах водохранилищ;

3) нарушение условий существования и нереста рыбы, сокращение рыбных запасов (в частности, на Волге и Енисее);

4) разрушение ГЭС при военных действиях приведет к спуску воды водохранилища, возникновению волны высотой в десятки метров, которая может уничтожить города, расположенные ниже ГЭС;

5) строительство ГЭС приводит к наведенной сейсмичности, в частности в США и Индии возникали землетрясения, разрушившие ГЭС.

Экологические харакгеристики альтернативных источников энергии

Развитие энергетики пока в основном базируется на невозобновляемых источниках энергии — углеродсодержащем или урановом топливе. Экологические недостатки этих источников энергии приводят к разработке и все более широкому использованию нетрадиционных (альтернативных) возобновляемых источников энергии. С этой точки зрения перспективной является энергетика, основанная на использовании солнечной энергии, энергии ветра, малых рек, приливов и волн, течений, геотермальной энергии, энергии биомассы и т.п. Перечень нетрадиционных возобновляемых источников энергии с развитием науки и технологий непрерывно возрастает. Уже в 1991 г. энергия от возобновляемых источников в процентах к общему объему производства энергии составляла в Норвегии — 99%, Австрии — 70, Швейцарии — 62, Португалии — 55, Швеции — 41, Испании — 25.

В настоящее время исследования по использованию солнечной энергии ведутся на всех континентах. В США к 2020 г. предполагают удовлетворить от 10 до 30% своих энергетических потребностей страны за счет солнечных установок, в Японии в 2010 г. — 3%. Национальные программы развития солнечной энергетики приняты в 68 странах. Солнечная радиация, достигающая внешних границ земной атмосферы, несет энергию в 5,6 • 106 ЭДж в год (Р = 17 млрд кВт). Около 65 % этой энергии расходуется на нагрев поверхности, испарительно-осадочный цикл, фотосинтез, а также на образование волн, воздушных и океанских течений и ветра, 35% солнечной энергии отражается. Поток солнечной энергии, достигающий земной поверхности, в 9 тыс. раз больше суммарной энергии, производимой в мире в настоящее время с помощью органических видов топлива и урана.

Солнечная энергия обладает рядом преимуществ. Она имеется повсюду, практически неисчерпаема и доступна в одной и той же форме на бесконечно долгий период времени. Чтобы обеспечить свои энергетические потребности в 2100 г., человечеству достаточно использовать меньше 0,1 % падающей на Землю солнечной энергии или сороковую часть солнечной энергии, падающей пустыни. Однако солнечная энергия обладает низкой плотностью потока (800—1000 Вт/м2), ее интенсивность меняется в течении суток, зависит от сезона и т.д. Как падающая, так и рассеянная солнечная радиация относится к прямым видам солнечной энергии. Косвенными видами солнечной энергии являются энергия ветра, волн, приливов, тепловые градиенты океана, гидроэнергия и энергия, полученная благодаря фотосинтезу.

Условно можно выделить четыре направления использования солнечной энергии: теплотехническое, фотоэлектрическое, биологическое и химическое. Теплотехническое направление (солнечное теплоснабжение) основано на нагревании теплоносителей, например воды, обычными или сконцентрированными солнечными лучами в специальных устройствах-коллекторах. Этот способ уже стал находить практическое применение в США, Японии, в южных районах нашей страны для опреснения и получения горячей воды, обогрева зданий зимой и охлаждения их летом, для сушки различных продуктов и материалов, питания термопреобразователей и т. п. Уже при сегодняшней эффективности солнечные коллекторы могут оказаться экономически целесообразными вплоть до районов, лежащих на 56-й широте (примерно на широте Москвы). Большое внимание во многих странах уделяется фотоэлектрическому способу использования электрической энергии.

К существенному прогрессу здесь привели открытия, сделанные за последние 10 — 20 лет в физике и химии полупроводников. На их основе были созданы фотоэлектрические преобразователи — солнечные батареи, которые ныне широко используются на космических кораблях. КПД батарей составляет 12—15%, а на лабораторных образцах достигнуты и значительно лучшие результаты (28 — 29 %).

Теоретические исследования привели к выводам о принципиальной возможности достижения в полупроводниковых структурах с переменной шириной запрещенной зоны, использующих объемный фотоэффект, коэффициента полезного действия, близкого к 90%. Однако, широкое использование полупроводниковых преобразователей в наземной энергетике сдерживается из-за их пока еще высокой стоимости (стоимость выработки электроэнергии солнечными батареями выше, чем при традиционных способах). Следовательно, одно из главных направлений здесь — разработка более дешевых преобразователей, например, с использованием пленочных и органических полупроводников, и менее дорогих технологий их производства.

В Италии и США уже созданы солнечные электростанции. Их экологическими недостатками являются большие затраты материалов и нарушения экологического равновесия под солнечными батареями, занимающими площадь в несколько гектаров.

Наряду с этим намечаются и пути практического использования уже имеющихся биологических преобразователей. С точки зрения возможности относительно быстрой реализации наиболее заманчивым представляется следующий двухступенчатый метод: вначале под действием солнечного света на культуру быстрорастущих микроводорослей или других растений следует накапливать органическую биомассу, а затем с помощью специальных бакгерий перерабатывать ее в высококалорийное топливо, например метан.

Одним из наиболее перспективных в будущем представляется процесс разложения воды на водород и кислород под действием солнечной радиации. Дело в том, что запасы воды на Земле практически неограниченны, а водород — это ценный химический продукт, который можно использовать в виде экологически чистого топлива, не дающего вредных отходов. Водород является лучшим топливом из всех известных видов: по теплотворности на единицу массы он в 2,6 раза превосходит природный газ и в 3,3 раза нефть или бензин. Кроме того, по мнению ряда ученых, он может передаваться по трубам на большие расстояния с затратами, близкими к стоимости передачи электрической энергии. Заметим, что вследствие непостоянства потока солнечной энергии, падающей на Землю в течение дня или в разные времена года, приходится использовать аккумуляторы энергии. Таким хорошим аккумулятором может быть сам водород, получаемый при разложении воды.

Извлечь водород из воды можно как электролитически, что довольно дорого, так и прямым химическим (или фотохимическим) путем. Однако видимая часть солнечного света воду практически не разлагает. Поэтому вся проблема сводится к тому, чтобы найти соответствующие катализаторы. Отдельные стадии этого процесса в той или иной степени уже разработаны. Ближайшая задача состоит в том, чтобы соединить эти каталитические системы в единый законченный фотохимический преобразователь.

Можно предположить, что со временем этот метод также станет экономически выгодным для широкого применения.

Все большее внимание привлекает использование энергии ветра, поскольку в масштабах планеты энергия ветра в 1000 раз превышает гидроэнергию. В Дании в 1997 г. вращались лопасти 4000 электростанций, использующих энергию ветра. Они обеспечивают 3,7% общего объема потребления электроэнергии. Однако к 2030 г. производство электроэнергии на основе энергии ветра, солнца и биогаза должно увеличиться до 50 % общего производства. В итоге планируется вдвое уменьшить выбросы вредных веществ в атмосферу. Разработаны ветроустановки мощностью 500 — 600 кВт. Стоимость производства ветроэнергии сейчас составляет 20 центов за 1 кВт • ч, ее планируется уменьшить до 4,3—4,4 цента/кВт • ч, что меньше стоимости производства электроэнергии на АЭС и ТЭС (7 центов за 1 кВт • ч).

Дания является ведущей страной по применению энергии ветра. Национальные программы освоения энергии ветра развернуты также в Нидерландах, Канаде, ФРГ, Франции, Швеции, КНР и других странах. В США планировалось получить с помощью энергии ветра в 2000 г. 2 % всей производимой электроэнергии, в Дании и Нидерландах — 10 %. Страны Европейского сообщества планируют довести к 2030 г. долю ветроустановок в производстве электроэнергии до 10%. Опытные работы, проведенные в ФРГ, показали, что современные оптимальные по энергетике ветроэлектростанции (ВЭС) будут иметь гигантские размеры: на 90-метровых башнях должны вращаться пропеллеры с размахом лопастей 80—100 м, которые приводят в движение роторы генераторов электрической энергии ВЭС. Башни должны отстоять друг от друга на расстоянии трех высот башен, поэтому ВЭС занимают сейчас большие площади.

В качестве главного экологического недостатка ВЭС отмечают генерацию ими инфразвукового шума, вызывающего постоянное угнетенное состояние, чувство дискомфорта и беспокойства. Как показывает опыт эксплуатации подобных установок в США, этот шум не выдерживают ни животные, ни птицы. Территории, где размещаются ВЭС большой мощности, оказываются практически непригодными для проживания.

В России построено 1500 ветроустановок разной мощности. В нашей стране целесообразно использовать ВЭС в Калининградской области, на побережье Каспийского и Черного морей, на Байкале, Камчатке и Сахалине, побережье Северного Ледовитого океана.

Геотермальная энергетика на базе термальных (горячих подземных) вод развивается достаточно интенсивно в США, на Филиппинах, в Мексике, Италии, Японии, где построены геотермальные тепловые электростанции. В России большие ресурсы геотермальной энергии имеются на Камчатке, Сахалине и Курильских островах, меньшие — на Кавказе. Геотермальная энергия может применяться в сельском (обогрев теплиц) и коммунальном (горячее водоснабжение) хозяйствах. К геотермальному водоснабжению подключены некоторые населенные пункты Дагестана, Ингушетии, Краснодарского и Ставропольского краев, Камчатки.

Океаны содержат огромный потенциал в виде тепловой энергии по глубине толщи воды (радиации, температур верхнего и нижнего слоев воды), а также энергию океанических течений, морских волн и приливов. В мире наиболее развиты работы по приливным электростанциям (ПЭС). В 1966 г. во Франции построена ПЭС «Ранс», вырабатывающая 500 млн кВт • ч электроэнергии в год, в 1968 г. в России — Кислогубская ГТЭС на Кольском полуострове, в 1984 г. — ПЭС в Канаде мощностью 20 МВт.

Перспективно производство энергии биомассы, получаемой в результате переработки органических отходов. Разработаны технологии производства биогаза и этанола, которые можно использовать как топливо и компост (органические удобрения) из органических отходов животноводческих комплексов, свинокомплексов, птицефабрик, городских сточных вод, бытовых отходов, отходов деревообрабатывающей промышленности

экономия энергии

Экономические и экологические соображения требуют всемерной и повсеместной экономии энергоресурсов. Такая экономия позволит уменьшить расходы на производство продукции, сохранить энергоресурсы для будущих поколений, уменьшить загрязнение окружающей среды.

Внимание к энергосберегающим технологиям производства резко возросло после нефтяного кризиса 1973 — 1974 гг., когда страны ОПЕК уменьшили экспорт нефти и увеличили цену на нее. В первую очередь пострадали развитые страны Европы, США, Япония. Новые энергосберегающие технологии были разработаны в Японии: с 1973 по 1984 г. валовой продукт Японии увеличился примерно вдвое, а энергозатраты возросли только на 7 —8%. Количество энергии, необходимой для выплавки стали, снизилось в Японии более чем на 85 %. Это достижение связано с внедрением непрерывной разливки, которая в свою очередь стала возможна благодаря использованию огнеупорных кирпичей с керамическими добавками (с повышенной устойчивостью к теплу и трению). Разработан также керамический автомобильный двигатель. В 1985 г. фирма «Тойота» на международной выставке продемонстрировала сверхэкономичный автомобиль с керамическим двигателем, который на 100 км пути тратит менее 2 л бензина.

Резко снизили энергоемкость промышленной продукции и другие страны. Если принять энергоемкость в 1970 г. за 100%, то уже в 1983 г. она составляла в США — 61 %, Великобритании — 55%, Франции — 61 %, при этом производительность труда возросла в США в 1,33 раза, в Англии — в 1,63, во Франции — в 1,47, в Японии — в 1,56 раза.

Приведем несколько примеров энергосберегающих технологий. Более половины всей энергии, производимой в США, потребляют электромоторы. Использование современных электродвигателей с микропроцессорным управлением позволило бы сэкономить 20 % потребляемой электроэнергии. Улучшение теплоизоляции домов (тройные оконные рамы, толщина стен 10—12 см) позволило бы уменьшить примерно на 50 % энергию, затрачиваемую на их обогрев. Такие меры принимаются в США, Швеции и других странах. Использование экономичных люминесцентных или натриевых ламп вместо ламп накаливания примерно в 4 раза уменьшает затрачиваемую электрическую энергию (в нашей стране на освещение идет 13% электроэнергии).

Огромное количество энергии (60 — 80%) удалось бы сэкономить в России, если повсеместно перейти от малоэффективного и экологически вредного мартеновского производства стали к разработанной в нашей стране технологии ее непрерывной разливки.

Современные типы двигателей автомобилей позволяют снизить потребление топлива в 2 —6 раз (до 4,5—1,5 л бензина на 100 км), тем самым достигаются большая экономия нефтепродуктов и снижение вредных выбросов в атмосферу.

В целом потребление энергии в развитых странах при использовании энергосберегающих технологий может быть снижено в 1,5 раза (на 30%). Рекомендации по экономии энергии в быту.

^ Кипятите столько воды, сколько вам нужно, не больше.

^ После закипания кипятите воду 1—3 мин.

^ Закрывайте кастрюли и чайники крышками.

^ Используйте только нужное вам освещение. Остальные светильники выключайте. Уходя из комнаты, гасите свет.

^ Больше пользуйтесь маломощным местным освещением (настольными лампами, торшерами и т.д.).

^ Следите за чистотой ламп. Вытирайте на них пыль.

^ Где возможно, применяйте экономичные люминесцентные или натриевые лампы.

^ При необходимости использования электроотопительных приборов (электрокамины, рефлекторы и т.п.) ликвидируйте утечки тепла из помещения: заделайте щели в окнах, утеплите двери.

Земельные ресурсы

Земельные ресурсы и почвенный покров Земли, которые создавались тысячелетиями, - основа живой природы и сельскохозяйственного производства. Но лишь 1/3 земельного фонда планеты – это сельскохозяйственные угодья, т. е. земли, используемые для производства продуктов питания. К тому же почти 3 / 4 всех почвенных ресурсов планеты имеют пониженную продуктивность из-за недостаточной обеспеченности теплом и влагой. Пастбища часто распахивают с целью производства зерновых и других продовольственных культур, их потери компенсируют сведением лесов. Так, только за последние 100 лет было расчищено больше земельных площадей для оседлого земледелия, чем за все предшествующие века существования человеческой цивилизации. Сохранение земельных ресурсов планеты - это одна из важнейших задач человечества.

Во многих странах резервов для сельскохозяйственного освое­ния уже практически нет остаются лишь леса и «экстремальные территории». Земельные ресурсы быстро сокращаются еще вследствие того, что продуктивные земли отторгаются под строи­тельство и горнопромышленные разработки, поглощаются города­ми и другими населенными пунктами, затопляются при сооруже­нии водохранилищ.

Еще одной проблемой земледелия является деградация почв, в первую очередь, вследствие неправильного землепользования. Эрозия почв (водная и ветровая) снижает плодородие почв, повреждает посевы. Засоление почв (в т. ч. вследствие орошения) также приводит к полному выводу значительных территорий из сельскохозяйственно­го оборота. Особенно остро эта проблема стоит в жарких странах.

В большей степени, чем почвы умеренной зоны, подвержены истощению почвы тропических районов мира (ввиду ливневого характера дождей и самого состава этих почв). А в засушливых зонах имеет место другая проблема - большой ущерб сельскому хозяйству наносят пыльные бури, которые поднимают в воздух тучи пыли, песка, почвы. Иногда ветер выдувает слой почвы на 15-­20 см, перенося ее на огромные расстояния.

Для многих регионов мира xapaктepeн процесс опустынивания. Всего в аридных регионах мира подверглось опустыниванию в умеренной или более сильной степени примерно, 80 % сельскохо­зяйственных земель. Особенно большой урон процесс опустынива­ния наносит африканским странам в зоне Сахеля (своеобразного природного ландшафта на границе пустынных земель и саванн в тропической Африке). Общая площадь антропогенных пустынь мира ныне превышает 9 млн км2, то есть практически равна площади территории США. И еще 19 % суши планеты находится на грани опустынивания.

Лесные ресурсы

На нашей планете лесами занято около 4 млрд га земель (око­ло 30 % суши). Но только за последние 200 лет площадь лесов в мире сократилась в 2 раза. Уничтожение лесов такими темпами будет иметь катастрофические последствия для всего мира, так как сокращается поступление кислорода в атмосферу, усиливает­ся «парниковый эффект», меняется климат на планете.

Леса северного лесного пояса в экономически развитых странах подвергались интенсивному уничтожению в прошлом, но затем лесной покров был в значительной степени восстановлен (за счет лесопосадок). Основной же причиной потери леса и снижения его качества в развитых странах в последние десятилетия стали кис­лотные дожди (следствие загрязнения воздушной среды).

В развивающихся странах леса вырубаются под пашни и паст­бища, к тому же древесина наиболее ценных пород экспортируется в развитые страны. Древесина остается также основным энерго­носителем - 70 % всего населения развивающихся стран исполь­зует древесину как топливо при приготовлении пищи и обогреве жилищ. При этом обеспеченность лесными ресурсами в этих стра­нах различна и часто невелика. Леса также сокращаются и дегра­дируют от загрязнения воздушной среды и почв.

На протяжении многих веков сокращение площади лесов на Планете практически не препятствовало прогрессу человечества. Однако с недавнего времени этот процесс стал отрицательно ска­зываться на экономическом и экологическом состоянии многих стран. И хотя около 30 % суши Земли еще покрыто древесной растительностью, охрана лесов и лесовосстановительные работы необходимы для дальнейшего существования человечества.

Водные ресурсы

Вода — один из наиболее важных видов природных ресурсов. Не все территории земного шара богаты естественной питьевой водой, достаточной для обеспечения проживающего там населения. Уровень потребления воды зависит, прежде всего, от условий жизни, климата и уровня оснащенности жилища современной бытовой техникой. Для регулирования правильного обмена веществ в организме человек ежедневно должен потреблять от 2 до 3 л воды. Вода необходима также для поддержания гигиены тела, приготовления пищи, уборки помещений и т.д.

По среднестатистическим оценкам, человеком ежедневно потребляется из источников, близких к дому, примерно 25 л воды. В квартирах с водопроводом, но без ванны, — от 40 до 70 л, а в квартирах со всеми удобствами от 250 до 400 л. На смыв в туалете, мытье рук и ванны расходуется около 78 % воды. Большая часть воды используется крайне нерационально. Из-за утечки воды в трубах, магистральных водопроводах, туалетах, ваннах и кранах теряется примерно от 20 до 35% воды, выделяемой на коммунальные нужды. Общее суммарное потребление воды в сутки в Лондоне составляет 300 л на человека, в Москве — 400 л (однако 20% воды в Москве не доходит до потребителя из-за утечек). Широко используется пресная вода на производстве и в сельском хозяйстве.

Более или менее точного учета расхода пресной воды в мире не существует. Тем не менее есть основания полагать, что все население земного шара расходует примерно 10 млрд т в сутки, или 3800 км3 в год. Цифра суточного расхода воды соизмерима с объемом всех полезных ископаемых, добываемых в мире за год.

Около 60 % всей суши приходится на зоны, бедные запасами пресной воды. Во многих странах Азии, Африки и Латинской Америки ощущается острый ее недостаток. Здесь обеспечение самых минимальных потребностей людей в питьевой воде — большая проблема. Вместе с тем недостаточно высоко ее качество. В 1990 г. 2,5 млрд человек, т. е. почти половине населения земного шара, питьевой воды не хватало.

Практически полностью отсутствуют собственные источники пресной воды в странах Аравийского полуострова, где используется морская опресненная вода. В районе Персидского залива действует и проектируется 48 опреснительных установок. Опресненную воду используют жители Гибралтара, Багамских, Бермудских островов, Куросао и др. Гонконг и Сингапур импортируют воду из Малайзии. Недостаточны ресурсы пресной воды в Японии, Италии, Алжире, Тунисе, Эфиопии, Пакистане, Афганистане и многих других странах.

Примерно 1 млрд человек на планете не имеет доступа к чистой воде.

В результате употребления недостаточно чистой воды ежегодно умирает от болезней около 3 млн человек, из них — 60% детей. Почти 60 % заболеваний и эпидемий обусловлено употреблением непригодной с гигиенической точки зрения воды.

Потребности человечества в пресной воде возрастают в первую очередь из-за роста численности населения, а во вторую — из-за увеличения расхода воды на душу населения, вызванного развитием промышленности, ирригацией и строительством водопроводов.

Основной путь преодоления дефицита воды – рациональное ее использование, охрана и забота о водных источниках.