Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
FIZIOLOGIYa_SISTEMY_KROVOOBRASchENIYa.docx
Скачиваний:
38
Добавлен:
06.05.2020
Размер:
24.17 Кб
Скачать

Артериальный пульс

Артериальный пульс – это ритмическое толчкообразное колебание стенки со-суда, возникающее вследствие выброса крови из сердца в артериальную систему. Пульс от лат. рulsus – толчок.

Колебания стенок артерий можно записать при по-мощи сфигмографа. Записываемая кривая назы-вается сфигмограммой. На кривой записи пульса –сфигмограмме всегда видно восходящее колено – анакрота, плато, нисходящее колено – катакрота, дикротический подъем и инцизура (вырезка).

Свойства пульса.

Чаще всего пульс исследуют на лучевой артерии (a.radialis). При этом обра-щают внимание на следующие свойства пульса:

1. Частота пульса (ЧП). ЧП характеризует ЧСС. В норме ЧП= 60 – 80 уд/мин. При увеличении ЧП свыше 90 уд/мин говорят о тахикардии. При урежении (менее 60 уд/мин) – о брадикардии.

По ЧП можно судить какая Т у человека. Повышение Т на 10С ведет к учаще-нию пульса на 8 уд/мин.

2. Ритмичность пульса. Пульс может быть ритмичным аритмичным. Если пульсовые удары следуют один за другим через одинаковые промежутки времени, то говорят о правильном, ритмичном пульсе. Если этот промежуток времени меняется, то говорят о неправильном пульсе – пульс аритмичен.

3. Быстрота пульса. Быстрота пульса определяется скоростью повышения и падения давления во время пульсовой волны. В зависимости от этого показателя различают быстрый или медленный пульс.

4. Напряжение пульса. Оно определяется силой, которую надо приложить для полного прекращения распространения пульсовой волны. В зависимости от этого выделяют напряженный, твердый пульс, что наблюдается при гипертонии, и ненапряженный (мягкий) пульс, что бывает при гипотонии.

5. Наполнение или амплитуда пульса – это изменение диаметра сосуда во время пульсового толчка. В зависимости от этого показателя различают пульс с большой и малой амплитудой, т.е. хорошего и плохого наполнения. Наполнение пульса зависит от количества выбрасываемой сердцем крови и от эластичности сосудистой стенки.

Движение крови в венах.

Движение крови в венах также подчиняется основным законам гемодинамики. Однако в отличие от артериального русла, где давление снижается в дистальном направлении, в венозном русле наоборот – давление падает в проксимальном направлении.

Скорость движения крови в венах значительно меньше, чем в артериях.

1. Имеет большое значение остаточная сила сердечной деятельности. Эта сила называется силой проталкивания.

2. Присасывающее действие грудной клетки. В плевральной щели давление отрицательное, т.е. ниже атмосферного на 5-6 мм рт.ст. При вдохе оно увеличивается. Поэтому во время вдоха увеличивается давление между началом венозной системы и местом вхождения полых вен в сердце. Приток крови к сердцу облегчается.

3. Деятельность сердца, как вакуумного насоса. Во время систолы желудочков сердце уменьшается в продольном направлении. Предсердия подтягиваются к желудочкам. Их объем увеличивается. Давление в них падает. Это и создает не-большой вакуум.

4. Сифонные силы. Между артериолами и венулами имеются капилляры. Кровь течет непрерывной струей и за счет сифонных сил по системе сообщающихся сосудов она попадает из одних сосудов в другие.

5. Сокращение скелетных мышц. При их сокращении сдавливаются тонкие стенки вен и кровь, проходящая по ним, течет быстрее, т.к. давление в них повышается.

6. Сокращение диафрагмы. При сокращении диафрагмы ее купол опускается вниз и давит на органы брюшной полости, выдавливая из вен кровь

7. В движении крови имеет значение гладкая мускулатура вен. Хотя мышечные элементы выражены слабо, все равно повышение тонуса гладких мышц ведет к суже-нию вен и тем самым способствует движению крови.

8. Гравитационные силы. Этот фактор является положительным для вен, лежа-щих выше сердца. В этих венах кровь под своей тяжестью течет к сердцу. Следующий показатель, влияющий на процессы системной гемодинамики – это центральное венозное давление.

Кровяные депо

1. Селезенка. В селезенке может находиться 10-20% общего количества крови.

В селезенке может депонироваться от 300 до 700 мл крови.

2. Самым мощным депо в организме является капиллярное сплетение подкож-ной жировой клетчатки.

3. Следующим органом, который выполняет депонирующую функцию, является печень. В данном органе мелкие и средние вены имеют толстый мышечный слой. У взрослого человека в печени депонируется до 800 мл крови.

Микрогемодинамика (микроциркуляция).

Микроциркуляторное русло.

Система микроциркуляции обеспечивает обмен между кровью и тканями.

В месте отхождения капилляра от метартериолы имеется гладкомышечная клетка, получившая название – прекапиллярный сфинктер, т.к. ее сокращение вызывает прекращение тока крови по капиллярам.

Процессы транскапиллярного обмена жидкости определяется силами, действующими в области капилляра: капиллярное гидростатическое давление (Рс) и гидростатическое давление интерстициальной жидкости (Рi). Разность между которыми способствует процессу фильтрации – переходу жидкости из крови

Немаловажную роль в процессе обмена между кровью и тканями играет онкотическое давление белков плазмы и внеклеточной жидкости. Таким образом, чем выше гидростатическое давление и ниже онкотическое дав-ление плазмы, тем больше скорость фильтрации. В среднем скорость фильтрации в микроциркуляторном русле составляет 20 л/сут,

Следующим фактором, определяющим возможности транскапиллярного об-мена, является проницаемость капиллярной стенки для различных веществ.

Говоря о системе микроциркуляции нельзя не остановиться на таком понятии, как тканевой функциональный элемент (А.М.Чернух).

Это понятие включает в себя комплекс клеток органа, имеющих общее кровообращение и иннервацию.

В функциональном элементе можно выделить 4 части:

1. Рабочая – включает в себя клетки, выполняющие основную функцию органа.

2. Соединительная ткань. Обеспечивает формирование “скелета” органа. Явля-ется трофическим аппаратом. Могут синтезировать БАВ.

3. Совокупность микрососудов (микроциркуляторная единица). Обеспечивает питание и дыхание.

4. Нервные клетки. Обеспечивают регуляцию.

Кроме того, нельзя не отметить и влияние гуморальных агентов на работу функционального элемента.

Гистогематический барьер

Внутренняя среда клеток и тканей отличается по своим парамет¬рам от крови и имеет параметры необходимые для данного организма, следовательно можно выделить 2 среды:

1. Кровеносная

2. Клеточная

Поскольку, состав у них разный, между кровью и клетками име¬ются барьеры, которые регулируют перенос веществ из крови в клет¬куи защищают клетки от чужеродных агентов.

Задача ГГБ- избирательно пропускать необходимые вещества

РЕГИОНАРНОЕ (ОРГАННОЕ) КРОВООБРАЩЕНИЕ

Кровоснабжение органов в нашем организме зависит от их функционального состояния. Так, например, при физической нагрузке кровоток смещается к работаю-щим мышцам, при усиленной умственной работе – к мозгу и т.д. При угрожающих состояниях (шок, потеря сознания) кровоток смещается к сердцу и мозгу, поддерживая жизнедеятельность.

Таким образом, задача регионарного кровообращения – обеспечить кровью данный орган. Регуляция осуществляется либо за счет включения быстрых, либо медленных механизмов.Быстрые механизмы включают – местные, гуморальные и нервные механизмы регуляции. При чем к местным относятся метаболические (К, АДФ, кислород, Н, молочная кислота и др.) и миогенные (от притока крови) меха-низмы.

ИННЕРВАЦИЯ СОСУДОВ.

Гладкая мускулатура сосудов находится в постоянном тонусе. Тонус сосудов поддерживается в основном за счет автоматии гладких мышц (базальный тонус). Нервные влияния носят корригирующий характер, т.е. оказывают влияние на автоматию.

Симпатическая иннервация. симпатические нервные волокна повышают тонус сосудов – сосуды суживаются (вазоконстрикция).

Соседние файлы в предмете Физиология человека