Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
пособие для 1 семестра.doc
Скачиваний:
59
Добавлен:
15.06.2014
Размер:
6.21 Mб
Скачать

2.4. Применение первого начала термодинамики к изопроцессам

Изохорический процесс (V=const). Газ не совершает рабо­ту, т.е.A=0. Из первого начала термодинамики следует, что вся теплота, сообщаемая газу, идет на увеличение его внутренней энергии:

.

Изобарический процесс (p=const). Теплота, сообщаемая газу, идет на приращение внутренней энергии и на совершение работы над внешними телами:

.

Изотермический процесс (T=const). Внутренняя энергия газа не изменяется и все количество тепла, сообщаемое газу, расходуется на совершение им работы против внешних сил:

.

2.5. Адиабатический процесс

Адиабатическим называется процесс, при котором отсутствует теплообмен (Q= 0) между физической системой и окружающей средой. Близкими к адиа­ба­ти­ческим являются все быстропротекающие процессы. Из первого начала термодинамики для адиабатического процесса следует, что , т.е. работа совершается за счет убыли внутренней энергии системы. Используя первое начало термодинамики, можно получить уравнения адиабатического процесса:

;

.

Вычислим работу, совершаемую газом в адиабатическом процессе. Если газ расширяется от объема V1доV2, то его температура падает отT1доT2и работа расширения идеального газа

Это выражение для работы при адиабатическом процессе можно преобразовать к виду

.

2.6. Обратимые и необратимые процессы. Коэффициент полезного действия теплового двигателя

К обратимым процессамотносятся процессы, после проведения которых в прямом и обратном направлениях в окружающих систему телах не остается никаких изменений. Для обратимых процессов характерно следующее: если в ходе прямого процесса система получила количество теплаQи совершила работу А, то в ходе обратного процесса система отдает количество теплаQ = -Qи над ней совершается работа А = -А. К обратимым процессам относятся все равновесные процессы. В случаенеобратимого процесса, после возвращения системы в исходное состояние, в окружающих систему телах остаются изменения (изменяются положения тел и их температуры). Все реальные процессы в большей или меньшей степени необратимы.

В процессе преобразования тепла в работу используется тепловой двигатель, работающий по какому-либо круговому процессу (циклу). Коэффициент полезного действиятакого двигателя (термический КПД) определяет долю тепла, превращаемую в работу:

,

где А работа, совершенная двигателем за цикл,Q1количество тепла, полученного двигателем,Q2количество тепла, отданного двигателем в окружающую среду. Работу теплового двигателя можно представить на диаграмме состояний в виде некоторого теплового кругового процесса (рис.19). Общая работа А определяется площадью цикла 1а2в1. Если за цикл совершается А>0, то цикл называется прямым, и если А<0, – обратным.

Прямойцикл используется в тепловом двигателе, совершающем работу за счет получения извне теплоты.Обратныйцикл используется в холодильных машинах, в которых за счет работы внешних сил теплота переносится к телу с более высокой температурой (рис. 20).

Важной задачей термодинамики является изучение процессов преобразования тепла в работу и установления возможных границ повышения термического КПД.

Р

1

а

2

б

V

V1

V2

Рис. 19