Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпаргалка по вирусологии..doc
Скачиваний:
255
Добавлен:
30.05.2014
Размер:
265.73 Кб
Скачать

18. Инактивированные вакцины.

Инактивированные вакцины.

-наработка вирус содержащего материала с использованием злых полевых штаммов.

-Инактивация вируса (формалин, бета-пропиолактон, препараты азадинового ряда, температура, УФО, гамма-лучи, сульфат меди.

-Добавление адьюванта в инактивтрованную вакцину. Адьювант адсорбирует на своей поверхности частицы разрушенного вируса. (сорбент-адьюванты: Al-Al(OH)3, SiO2 или масляные адьюванты).

-Добавление сапонинов для суперраздражающего действия при в/м и п/к инъекциях. Применяют в очень малых концентрациях для образования воспаления в месте введения. Инактивированные вакцины готовятся из инактивированных вирулентных штаммов бактерий и вирусов.

Хранение и применение инактивированных вакцин:

эта группа препаратов теряет свою иммуногенность и увеличивает реактогенность при замораживании; вакцины должны храниться при температуре 4-8 °С; для создания длительной защиты требуется неоднократное введение инактивированных вакцин (так как их эффективность ниже, чем у живых).

Инактивированные вакцины обеспечивают создание в крови высоких концентраций антител. Однако клеточный иммунитет от инактивированных вакцин активируется в меньшей степени, чем от живых.

Для предотвращения заболевания, вызываемого вирусами типа А и В, чаще всего используются инактивированные вакцины (ваксигрипп, флюарикс, инфлювак), которые, в отличие от живых гриппозных вакцин, имеют меньшее число противопоказаний и менее реактогенны.

19. Живые вакцины.

Живые противовирусные вакцины представляют собой лиофилизированные взвеси вакцинных штаммов вирусов, выращенных в разл. био системах (КЭ, КК, в лаб жив.). Основным свойством является стойкая утрата способности вызывать в организме привитого жив. типичное инф. заболевание, также обл. способностью «приживляться» в орг. жив., т.е размножатся. Пребывание и размножение вакцинного штамма продолжается обычно 5-10дн. до нескольких недель и не сопр. клин. проявлениями, хар. для данной б., приводят к форм. иммунитета против инф. забл. Преимущества: высокая напряженность и длительность создаваемого ими иммунитета, приближающегося к постинфекц. Возможность для большинства однократного введения. Введение не только подкожно, но и перорально и интерназально. Недостатки: чуств к неблагоприятным факторам. Строгие рамки хранения и транспортировки – темпер – 4-8С. Недопустимо наруш. вакуума в апулах с вакцинами. Строгие соблюдения правил асептики. Контроль качества: 1)всестороние обслед. доноров тк. 2)оценку качества пит. среды и КК на стерильность. 3)Надзор за качеством производственных штаммов вирусов. 4)Создание оптим. усл. для сохр. биоматериалов. 5)опрация готового материала.

20. Субъединичные вакцины.

Субъединичная вакцина — вакцина, содержащая только поверхностные белки вируса гриппа.

21. Днк вакцины

Эксперименты по созданию ДНК-вакцин преимущественно ведутся с бактериальными плазмидами – небольшими стабильными кольцевыми ДНК, которые содержатся вне хромосом. Плазмиды хороши в том плане, что сами по себе не провоцируют инфекцию. Фактически их используют только в качестве вектора – средства доставки. Чтобы вызвать необходимую иммунную реакцию, выделенные из бактерий плазмиды модифицируют, внося определенные изменения в структуру ДНК. А именно вшивают гены, которые кодируют один или несколько определенных белков-антигенов, вырабатываемых конкретной бактерией или вирусом. Также встраиваются гены, необходимые для обеспечения экспрессии (активности) всей конструкции. В то же время фрагменты ДНК, ответственные за воспроизводство и размножение инфекции, в плазмиды не переносятся. Вводится вакцина обычно либо путем инъекции, либо с помощью так называемой «генной пушки». Этот аппарат, выпуская струю сжатого гелия, пробивает клеточные мембраны микроскопическими металлическими частицами, покрытыми ДНК. Попав тем или иным способом внутрь клеток, плазмиды провоцируют синтез белков-антигенов. Их появление вакцинируемый организм воспринимает как полноценное инфицирование и реагирует обычным образом, в итоге вырабатывая иммунитет против соответствующей бактерии или вируса. Стойкость иммунитета, который вырабатывается в ответ на введение ДНК-вакцин, определяется принципиально важным обстоятельством. Поскольку антигены синтезируются внутри самого организма, а не поступают с него извне, вызывается комплексная реакция. Активизируются все типы белых кровяных телец: B-лимфоциты вырабатывают антитела, нейтрализующие антигены в жидких межклеточных тканях (гуморальный иммунный ответ), а цитотоксические Т-лимфоциты разрушают болезнетворные агенты внутри клеток (клеточный иммунный ответ).

ДНК-вакцины заметно превосходят по своим характеристикам обычные препараты. В целом результаты многочисленных лабораторных исследований и клинических испытаний указывают на то, что ДНК-вакцины обладают всеми положительными свойствами традиционных вакцин, при этом не имея их недостатков. Введение фрагментов ДНК бактерий или вирусов вызывает полноценную иммунную реакцию, но совершенно исключает возможность заражения, поскольку в клетки не попадают гены, необходимые для развития инфекции. ДНК-вакцины сравнительно просто синтезировать в значительных количествах, используя уже ставшую обычной рекомбинантную технологию. Причем весь производственный процесс предельно унифицирован – меняются только гены, которые включаются в плазмиду. Кроме того, поскольку вакцины способны содержать фрагменты ДНК сразу нескольких различных штаммов возбудителей, их можно использовать для противодействия целому ряду инфекций одновременно. Что было бы чрезвычайно полезно, особенно в случае, если дело касается таких изменчивых и многоликих микроорганизмов, как вирус гриппа. Наконец, ДНК-вакцины чрезвычайно устойчивы и могут, в растворе или в сухом виде, храниться при обычных условиях, выдерживая высокие и низкие температуры и разный уровень влажности.