Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Волоконно-оптические сети - Р.Р. Убайдуллаев.pdf
Скачиваний:
695
Добавлен:
24.05.2014
Размер:
17.59 Mб
Скачать

В силу специфики излагаемого материала, большое внимание уделяется волоконно-оптическому интерфейсу, тем более, что с ростом скорости передачи (по мере перехода на Fast Ethernet и Gigabit Ethernet) и с увеличением протяженности сегментов (до величин от нескольких до нескольких десятков километров) приемлемые альтернативные решения отсутствуют.

При строительстве сети главную практическую ценность обычно имеют инструкции, правила, которых следует придерживаться для нормального функционирования сети, например: длины сегментов, диаметр коллизионного домена, количество рабочих станций в сети, и т.п. Однако сами по себе такие инструкции трудно воспринимать, если не иметь представления о стандарте, который, собственно, является первопричиной появления правил и инструкций. Поэтому вначале рассматриваются основные спецификации стандарта Ethernet. Описание более современных стандартов Fast Ethernet и Gigabit Ethernet строится на основе рассмотрения отличительных черт и модернизаций, преимуществ и недостатков по сравнению с предшественником. В завершении главы приведены примеры конфигураций сетей по мере роста от Ethernet до Gigabit Ethernet, а также краткие характеристики некоторых новых протоколов, в частности 802.3х, 802.1Q, RSVP, вооружившись которыми Gigabit Ethernet становится полноправной магистральной волоконно-оптической технологией.

Рис. 7.1. Этапы эволюции стандарта Ethernet

7.1. Сети Ethernet

Выделим три главных элемента стандарта: формат кадра, систему сигнализации между рабочими станциями при осуществлении передачи данных по протоколу CSMA/CD и набор физических сред: коаксиальный кабель, витая пара, волоконно-оптический кабель [З].

Формат кадра Ethernet

На рис. 7-2 показан формат кадра Ethernet. Поля имеют следующие назначения:

Преамбула: 7 байт, каждый из которых представляет чередование единиц и нулей 10101010. Преамбула позволяет установить битовую синхронизацию на приемной стороне.

Ограничитель начала кадра (SFD, start frame delimiter): 1 байт,

последовательность 10101011. указывает, что далее последуют, информационные поля кадра. Этот байт можно относить к преамбуле.

Адрес назначения (DA, destination address): 6 байт, указывает МАС-адрес станции (МАС-адреса станций), для которой (которых) предназначен этот кадр. Это может быть единственный физический адрес (unicast), групповой адрес (multicast) или широковещательный адрес (broadcast).

Адрес отправителя (SA, source address): б байт, указывает МАС-адрес станции, которая посылает кадр.

Поле типа или длины кадра (Т or L, type or length): 2 байта. Существуют два базовых формата кадра Ethernet (в английской терминологии raw formats - сырые форматы) –Ethernet_II и IEEE 802.3 (рис. 7.2), причем различное назначение у них имеет именно рассматриваемое поле. Для кадра Ethernet_II в этом поле содержится информация о типе кадра. Ниже приведены значения в шестнадцатеричной системе этого поля для некоторых распространенных сетевых протоколов: 0х0800 для IP, 0х0806 для ARP, 0х809В для AppleTalk, 0х0600 для XNS, и 0х8137 для IPX/SPX. С указанием в этом поле конкретного значения (одного из перечисленных) кадр приобретает реальный формат, и в таком формате кадр уже может распространяться по сети.

Для кадра IEEE 802,3 в этом поле содержится выраженный в байтах размер следующего поля - поля данных (LLC Data). Если эта цифра приводит к общей длине кадра меньше 64 байт, то за полем LLC Data добавляется поле Pad. Для протокола более высокого уровня не возникает путаницы с определением типа кадра, так как для кадра IEEE 802.3 значение этого поля не может быть больше 1500 (0x05DC). Поэтому, в одной сети могут свободно сосуществовать оба формата кадров, более того, один сетевой адаптер может взаимодействовать с обоими типами посредством стека протоколов.

Данные (LLC Data): поле данных, которое обрабатывается подуровнем LLC. Сам по себе кадр IEEE 802.3 еще не окончательный. В зависимости от значений первых нескольких байт этого поля, могут быть три окончательных формата этого кадра IEEE 802.3:

Ethernet_802.3 (не стандартный, в настоящее время устаревающий формат, используемый Novell) - первые два байта LLC Data равны 0xFFFF;

Ethernet_SNAP (стандартный IEEE 802.2 SNAP формат, которому отдается наибольшее предпочтение в современных сетях, особенно для протокола TCP/IP) - первый байт LLC Data равен 0хАА;

Ethernet_802.2 (стандартный IEEE 802.2 формат, используется фирмой

Novell в NetWare 4.0) - первый байт LLC Data не равен ни 0xFF (11111111), ни 0хАА (10101010).

Дополнительное поле (pad - наполнитель) - заполняется только в том случае, когда поле данных невелико, с целью удлинения длины кадра до минимального размера 64 байта - преамбула не учитывается. Ограничение снизу на минимальную длину кадра необходимо для правильного разрешения коллизий.

Контрольная последовательность кадра (FCS, frame check sequence): 4-

байтовое поле, в котором указывается контрольная сумма, вычисленная с использованием циклического избыточного кода по полям кадра, за исключением преамбул SDF и FCS.

Рис. 7.2. Два базовых MAC формата кадра Ethernet

Основные варианты алгоритмов случайного доступа к среде

Протокол CSMA/CD определяет характер взаимодействия рабочих станций в сети с единой общей для всех устройств средой передачи данных. Все станции имеют равноправные условия по передаче данных. Нет определенной последовательности, в соответствии с которой станции могут получать доступ к среде для осуществления передачи. Именно в этом смысле доступ к среде осуществляется случайным образом. Реализация алгоритмов случайного доступа представляется значительно более простой задачей, чем реализация алгоритмов детерминированного доступа. Поскольку в последнем случае требуется или специальный протокол, контролирующий работу всех устройств сети (например, протокол обращения маркера, свойственный сетям Token Ring и FDDI), или специальное выделенное устройство-мастер концентратор, который в определенной последовательности предоставлял бы всем остальным станциям возможность передавать (сети Arcnet, 100VG AnyLAN).

Однако сеть со случайным доступом имеет один, пожалуй главный, недостаток - это не совсем устойчивая работа сети при большой загруженности, когда может ПРОХОДИТЬ достаточно большое время, прежде чем данной станции удается передать данные. Виной тому-коллизии, которые возникают между станциями, начавшими передачу одновременно или почти одновременно. При возникновении коллизии передаваемые данные не доходят до получателей, а передающим станциям приходится повторно возобновлять передачу.

Дадим определение: множество всех станций сети, одновременная передача любой пары из которых приводит к коллизии, называется коллизионным доменом (collision domain). Из-за коллизии (конфликта) могут возникать

непредсказуемые задержки при распространении кадров по сети, особенно при большой загруженности сети (много станций пытаются одновременно передавать внутри коллизионного домена, > 20-25), и при большом диаметре коллизионного домена (> 2 км). Поэтому при построении сетей желательно избегать таких экстремальных режимов работы.

Проблема построения протокола, способного наиболее рационально разрешать коллизии, и оптимизирующего работу сети при больших загрузках, была одной из ключевых на этапе формирования стандарта Ethernet IEEE 802.3. Первоначально рассматривались три основных подхода в качестве кандидатов для реализации стандарта случайного доступа к среде (рис. 7.3): непостоянный, 1- постоянный и р-постоянный [5].

Рис. 7.3. Алгоритмы множественного случайного доступа (CSMA) и выдержка времени в конфликтной ситуации (collision backoff)

Непостоянный (nonpersistent) алгоритм. При этом алгоритме станция, желающая передавать, руководствуется следующими правилами.

1.Прослушивает среду, и, если среда свободна (т.е. если нет другой передачи или нет сигнала коллизии), передает, в противном случае - среда занята - переходит к шагу 2.

2.Если среда занята, ждет случайное (в соответствии с определенной кривой

распределения вероятностей) время и возвращается к шагу 1.

Использование случайного значения ожидания при занятой среде уменьшает вероятность образования коллизий. Действительно, предположим в противном случае, что две станции практически одновременно собрались передавать, в то время, как третья уже осуществляет передачу. Если первые две не имели бы случайного времени ожидания перед началом передачи (в случае, если среда оказалась занятой), а только прослушивали среду и ждали, когда она освободится, то после прекращения передачи третьей станцией первые две начали бы передавать одновременно, что неизбежно приводило бы к коллизиям. Таким образом, случайное ожидание устраняет возможность образования таких коллизий. Однако неудобство этого метода проявляется в неэффективном использовании полосы пропускания канала. Поскольку может случиться, что к тому моменту, когда среда освободится, станция, желающая передавать, еще

будет продолжать ожидать некоторое случайное время, прежде чем решится прослушивать среду, поскольку перед этим уже прослушивала среду, которая оказалась занятой. В итоге канал будет простаивать какое-то время, даже если только одна станция ожидает передачи.

1-постоянный (1-persistent) алгоритм. Для сокращения времени, когда среда не занята, мог бы использоваться 1-постоянный алгоритм. При этом алгоритме станция, желающая передавать, руководствуется следующими правилами.

1.Прослушивает среду, и, если среда не занята, передает, в противном случае переходит к шагу 2;

2.Если среда занята, продолжает прослушивать среду до тех пор, пока среда не освободится, и, как только среда освобождается, сразу же начинает передавать.

Сравнивая непостоянный и 1-постоянный алгоритмы, можно сказать, что в

1-постоянном алгоритме станция, желающая передавать, ведет себя более "эгоистично". Поэтому, если две или более станций ожидают передачи (ждут, пока не освободится среда), коллизия, можно сказать, будет гарантирована. После коллизии станции начинают решать, что им делать дальше.

Р-постоянный (p-persistent) алгоритм. Правила этого алгоритма следующие:

1.Если среда свободна, станция с вероятностью р сразу же начинает передачу или с вероятностью (1-р) ожидает в течение интервала времени Т. Интервал Т обычно берется равным максимальному времени распространения сигнала из конца в конец сети;

2.Если среда занята, станция продолжает прослушивание до тех пор, пока среда не освободится, затем переходит к шагу 1;

3.Если передача задержана на один интервал Т, станция возвращается к шагу 1.

Издесь возникает вопрос выбора наиболее эффективного значения параметра р. Главная проблема, как избежать нестабильности при высоких загрузках. Рассмотрим ситуацию, при которой n станций намерены передать кадры, в то время, как уже идет передача. По окончанию передачи ожидаемое количество станций, которые попытаются передавать, будет равно произведению количества желающих передавать станций на вероятность передачи, то есть nр. Если np > 1, то в среднем несколько станций будут пытаться передать сразу, что вызовет коллизию. Более того, как только коллизия будет обнаружена, все станции вновь перейдут к шагу 1, что вызовет повторную коллизию. В худшем случае, новые станции, желающие передавать, могут добавиться к n, что еще больше усугубит ситуацию, приведя, в конечном итоге, к непрерывной коллизии и нулевой пропускной способности. Во избежании такой катастрофы nр должно быть меньше единицы. Если же сеть подвержена возникновению состояний, когда много станций одновременно желают передавать, то необходимо уменьшать р. С другой стороны, когда р становиться слишком малым, даже отдельная станция может прождать в среднем (1 - р)/р интервалов Т, прежде чем осуществит передачу. Так если р=0,1, то средний простой, предшествующий передаче, составит 9Т.