Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Метода по моделированию.doc
Скачиваний:
1
Добавлен:
14.11.2019
Размер:
1 Mб
Скачать

Задание 3

Условие:

Заданы результаты исследования зависимости выходного параметра Y системы от входного параметра X. Предложена модель, отображающая эту зависимость. При измерениях значений параметров X и Y действовала погрешность Δ – случайная, нормально распределенная, с математическим ожиданием M[X]=0 и стандартным отклонением σ0 .

Требуется:

  1. найти наилучшие оценки параметров предлагаемой модели A, B, C, используя метод наименьших квадратов;

  2. проверить адекватность модели;

  3. сделать выводы по результатам проверки адекватности модели.

Исходные данные (вариант 2):

Модель, отображающая зависимость выходного параметра Y системы от входного параметра Х, представляет собой: Y=A+BX2+CX4

Результаты исследования представленной зависимости:

Х

Y

0,0

0,55145

0,2

1,69157

0,4

1,20713

0,6

-0,47091

0,8

3,38568

1,0

2,26144

1,2

4,32166

1,4

3,51986

1,6

8,12745

1,8

10,3484

2,0

12,7096

Параметры случайной нормально распределенной погрешности Δ:

M[X]=0, σ0=1,0.

Варианты задания №3

Вариант №1

Вариант №2

Вариант №3

Вариант №4

Y=A+BX2+CX4

σ0=0,5

Y=A+BX2+CX4

σ0=1,0

Y=AX+B+C·exp(-2X)

σ0=0,5

Y=AX+B+C·exp(-2X)

σ0=0,3

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1,62671

0,70929

2,89526

2,06907

2,21102

1,57526

2,71587

3,11263

4,23526

5,13899

6,5944

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

0,55145

1,69157

1,20713

-0,47091

3,38568

2,26144

4,32166

3,51986

8,12745

10,3484

12,7096

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

4,70485

3,64991

3,68395

3,43288

2,24040

3,31442

2,45240

2,66403

3,56198

2,59616

3,28298

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

4,12535

3,51883

2,54265

2,38867

2,57570

2,46378

3,0016

3,03689

3,13874

3,29634

3,46685

Вариант №5

Вариант №6

Вариант №7

Вариант №8

Y=A·sin(3X+φ)+B

σ0=0,2

Y=A·sin(3X+φ)+B

σ0=0,1

Y=A·cos(5X+φ)+

+B·exp(-4,5X) σ0=0,2

Y=A·cos(5X+φ)+

+B·exp(-4,5X) σ0=0,7

0,0

0,3

0,6

0,9

1,2

1,5

1,8

2,1

2,4

2,7

3,0

2,88759

2,44359

0,767879

-0,80708

-0,79418

0,322055

2,59874

2,80638

2,33995

0,638238

-1,00974

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

3,16808

2,71499

1,83161

0,536106

-0,520028

-1,06691

-0,682305

-0,069369

1,24949

2,306

3,09828

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

4,91234

2,38927

-0,730443

-2,23154

-1,72283

0,890583

2,40323

1,92196

-0,554228

-2,27529

-1,57077

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

3,86457

0,525047

0,859404

0,67189

-0,42704

-0,718088

1,24450

1,20089

1,32376

1.87576

0,2434563

Вариант №9

Вариант №10

Вариант №11

Вариант №12

Y=Aexp(-2X)cos(4X+

+FI)+B σ0=0,2

Y=Aexp(-2X)cos(4X+

+FI)+B σ0=0,3

Y=A+BX+Cln(2X)

σ0=0,8

Y=A+BX+Cln(2X)

σ0=0,6

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1,67367

0,419641

0,0734958

-0,474793

-0,432368

-0,708757

-0,2049

-0,471194

-0,127987

0,549841

0,344025

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

-1,17342

-1,62377

-0,25069

0,20789

0,501923

0,422505

0,648011

0,130895

0,232508

0,26431

0,469581

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

-6,07181

1,66263

2,64993

3,20007

4,34453

4,13156

4,83345

6,85337

6,59514

9,05168

9,18855

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

-0,223357

2,55276

2,90689

3,6946

4,03407

4,64226

4,8309

4,98791

5,83993

5,9749

7,2849

Вариант №13

Вариант №14

Вариант №15

Вариант №16

Y=A+Bln(X)+

+Cexp(-2X) σ0=0,4

Y=A+Bln(X)+

+Cexp(-2X) σ0=0,75

Y=Aarcsin(X/5)+

+BX2+C σ0=1

Y=Aarcsin(X/5)+

+BX2+C σ0=2

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

9,24895

8,25012

7,22222

6,65828

6,35915

5,82588

5,77919

4,96189

6,31122

5,25979

5,04393

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

4,6384

6,70842

6,72807

5,30964

5,4142

6,27263

4,8561

5,86328

4,62865

4,41516

4,98167

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

5,81566

4,20548

5,65863

4,41776

6,88447

5,0387

7,76232

8,23435

6,93499

10,4928

9,03856

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

5,16339

4,12732

3,73446

3,63867

7,09318

7,09172

0,45409

7,55153

6,30905

6,12263

6,81229

Вариант №17

Вариант №18

Вариант №19

Вариант №20

Y=Atg(2X)+Btg(4X)+

+Ctg(6X) σ0=0,4

Y=Atg(2X)+Btg(4X)+

+Ctg(6X) σ0=1

Y=A/X2+BX+C

σ0=0,85

Y=A/X2+BX+C

σ0=0,5

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

0,420096

0,752156

-6,58065

0,254646

-3,00951

0,893988

-2,42797

-1.11136

0,332368

0,589558

-1,73265

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0,538262

-0,427626

-1,12285

-0,39661

-5,18586

-1,23825

0,657469

0,606035

-4,2825

-0,174489

0,397112

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1,1

11,3477

2,72312

4,42003

1,78645

2,19682

2,0779

2,56426

2,75446

2,64989

3,42717

4,518

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

2,2

6,89901

4,16997

4,18784

3,94188

5,05194

6,01865

5,36724

7,46909

8,23641

8,75653

9,14135

Вариант №21

Вариант №22

Вариант №23

Вариант №24

Y=AX+Bcos(X)+

+C σ0=0,5

Y=AX+Bcos(X)+

+C σ0=0,6

Y=A/cos(2X)+BX2+

+C σ0=0,2

Y=A/cos(2X)+BX2+

+C σ0=0,4

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

2,75333

2,50703

2,48233

1,39476

3,08661

2,44184

1,43138

2,40008

2,4437

2,04085

2,62738

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

1,44303

0,169693

1,40935

1,92792

0,686022

2,46095

1,39798

1,57958

1,12832

1,70819

2,92303

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0,98568

-0,410926

0,157882

0,130849

0,0663939

0,269036

0,746163

0,783038

0,417074

0,975054

1,42893

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

1,99492

2,00315

1,59238

2,17837

-0,134564

1,41648

2,9043

1,64741

1,98793

2,35173

2,42614

Вариант №25

Вариант №26

Вариант №27

Вариант №28

Y=A/X2+Bsin(2X)+

+C σ0=1

Y=A/X2+Bsin(2X)+

+C σ0=0,5

Y=Acos(2X)+BX2+

+Cln(2X) σ0=1

Y=Acos(2X)+BX2+

+Cln(2X) σ0=0,5

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1,1

12,7492

5,58832

7,31359

4,56885

6,73266

3,47884

4,87065

7,12613

5,5754

6,15478

4,02618

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

2,2

4,42909

2,68288

2,35147

2,16626

1,54505

2,57474

1,55862

-0,274482

0,464506

-0,686556

-1,04168

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1,1

1,05558

3,66013

-0,730069

3,81085

-0,295295

0,300063

2,08339

1,37187

1,92099

-0,339277

1,20535

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0f

2,2

-0,209892

3,03343

1,35632

1,05349

1,34009

0,885496

1,60629

2,0116

3,11909

4,56548

6,79351

Вариант №29

Вариант №30

Вариант №31

Вариант №32

Y=2Asin(2X+FI)+

+Bexp(-2X) σ0=0,8

Y=2Asin(2X+FI)+

+Bexp(-2X) σ0=0,5

Y=Aexp(-5X)+B

cos(10X+FI) σ0=0,8

Y=Aexp(-5X)+B

cos(10X+FI) σ0=1

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

6,42777

7,64359

5,92302

3,86719

4,07854

3,40002

0,308517

-3,51725

-2,38591

4,44024

3,82341

0,0

0,3

0,6

0,9

1,2

1,5

1,8

2,1

2,4

2,7

3,0

7,52987

4,93491

3,17095

0,499417

-0,856639

-1,69959

-2,99271

-1,49298

0,25721

0,264545

3,13769

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1,1

0,607894

0,328398

0,602711

3,01343

2,63344

2,32789

-1,82922

-2,50946

-1,40666

0,312927

2,0401

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

2,2

1,38324

1,13233

0,677113

-2,27068

0,685994

0,991741

-0,571372

-0,48031

1,42128

-1,69605

-0,647389

Вариант №33

Вариант №34

Y=AX2+B/X+C σ0=0,7

Y=AX2+B/X+C σ0=0,4

0,1

0,2

0,3

0,4

0,5

0,6

5,58939

3,7393

3,65363

3,71812

2,32471

2,56821

0,7

0,8

0,9

1,0

1,1

3,49614

2,80274

3,74329

4,32602

4,15229

0,2

0,4

0,6

0,8

1,0

1,2

6,94328

4,29139

3,2136

3,05552

2,85025

2.84528

1,4

1,6

1,8

2,0

2,2

2.81064

3,12983

3,33831

3,47522

3,22642

Решение:

1. Нахождение наилучших оценок параметров А, В, С модели Y=A+BX2+CX4 методом наименьших квадратов (МНК).

МНК - один из методов регрессионного анализа для оценки неизвестных величин по результатам измерений, содержащих случайные ошибки.

Критерием близости в МНК является требование минимальной суммы квадратов отклонений от аппроксимирующей функции до экспериментальных точек:

(3.1.)

Таким образом, не требуется, чтобы аппроксимирующая функция проходила через все заданные точки, что особенно важно при аппроксимации данных, заведомо содержащих погрешности.

Таким образом, фактически необходимо подобрать набор коэффициентов А, В, С, минимизирующий функцию (3.1). Этот набор и будет являться наилучшими оценками параметров А, В, С.

Для этого используют необходимое условие экстремума:

(3.2)

Используя выражения (3.1) и (3.2), дифференцированием получаем так называемую нормальную систему МНК (4.3):

Полученная система (3.3) есть система алгебраических уравнений относительно неизвестных А, В и С. Определитель этой системы отличен от нуля, то есть решение существует и единственно. Перед непосредственным решением системы уравнений (3.3) найдем с помощью МS Excel численные значения сумм, указанных в (3.3), используя исходные экспериментальные данные.

Таблица 4.1

Х

Y

Х2

Х4

Х6

0,0

0,55145

0

0

0

0,2

1,69157

0,04

0,0016

0,000064

0,4

1,20713

0,16

0,0256

0,004096

0,6

-0,47091

0,36

0,1296

0,046656

0,8

3,38568

0,64

0,4096

0,262144

1,0

2,26144

1

1

1

1,2

4,32166

1,44

2,0736

2,985984

1,4

3,51986

1,96

3,8416

7,529536

1,6

8,12745

2,56

6,5536

16,77722

1,8

10,3484

3,24

10,4976

34,01222

2,0

12,7096

4

16

64

47,65333

15,4

40,5328

126,6179

Х8

X2 Y

Х4Y

0

0

0

2,56E-06

0,067663

0,002707

0,000655

0,193141

0,030903

0,016796

-0,16953

-0,06103

0,167772

2,166835

1,386775

1

2,26144

2,26144

4,299817

6,22319

8,961394

14,75789

6,898926

13,52189

42,94967

20,80627

53,26406

110,1996

33,52882

108,6334

256

50,8384

203,3536

429,3922

122,8152

391,3551

Пользуясь суммами, полученными в таблице 3.1,запишем систему уравнений (4.3) в виде:

Полученную систему линейных алгебраических уравнений (3.4) удобно решать матричным методом с помощью Mathcad. Для этого запишем матрицу системы М из коэффициентов и вектор свободных членов S из правых частей. Далее, решим сиcтему, умножая слева столбец свободных членов S на матрицу обратную матрице М. В итоге получаем вектор V, содержащий значения коэффициентов А, В и С системы (3.4).

Таким образом, наилучшие оценки параметров будут равны

А=0,786; В=1,472; С=0,403,

а модель запишется как

Y=0,786+1,472X2+0,403X4.

2. Проверка адекватности полученной модели Y=0,786+1,472X2+0,403X4.

Математическая модель должна достаточно верно качественно и количественно описывать свойства исследуемого явления, т.е. она должна быть адекватна. Это значит, что в некоторой подобласти, в которую входят и координаты выполненных опытов, предсказанное с помощью модели значение отклика не должно отличаться от фактического более чем на некоторую заранее заданную величину.

Для проверки адекватности модели достаточно оценить отклонение предсказанного имитационной моделью значения выходного параметра от результатов эксперимента с помощью.

Оцениваем дисперсию адекватности

(3.5), где

N – количество значений выходного параметра (N=11),

α – число членов аппроксимирующего полинома (α=3).

С помощью MS Excel найдем необходимые значения:

0,55145

0,786

-0,23455

0,055014

1,69157

0,846

0,84557

0,714989

1,20713

1,032

0,17513

0,030671

-0,47091

1,368

-1,83891

3,38159

3,38568

1,893

1,49268

2,228094

2,26144

2,661

-0,39956

0,159648

4,32166

3,741

0,58066

0,337166

3,51986

5,219

-1,69914

2,887077

8,12745

7,195

0,93245

0,869463

10,3484

9,786

0,5624

0,316294

12,7096

13,122

-0,4124

0,170074

11,15008

Тогда по формуле (4.5) получаем

(3.6)

Т.к. =1,39376 превышает дисперсию опыта σ0=1,0, то проверка гипотезы об адекватности проводится с помощью F – критерия, при котором степени свободы числителя и знаменателя соответственно равны

, где m- число серий в опыте.

По таблице для F - критерия по полученным степеням свободы при значении коэффициента риска β=0,05 определяем значение Fкр=2,95.

Определим значения F – критерия для полученной дисперсии адекватности (3.6)

Т.к. F<Fкр, то полученная модель признается адекватной.

3. Выводы по результатам проверки адекватности полеченной модели Y=0,786+1,472X2+0,403X4.

По результатам проверки адекватности модели с помощью F – критерия было установлено, что полученная модель адекватна, т.е. она адекватно описывает исследуемый процесс. Это означает, что полученную модель можно использовать для управления процессом и оптимизации его путем движения в направлении к экстремуму.