Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТЕРМОДИНАМИКА.docx
Скачиваний:
8
Добавлен:
27.09.2019
Размер:
128.97 Кб
Скачать

24)Электрический Ток в Вакууме

Если два электрода поместить в герметичный сосуд и удалить из сосуда воздух, то электрический ток в вакууме не возникает - нет носителей электрического тока. Американский ученый Т. А. Эдисон (1847-1931) в 1879 г. обнаружил, что в вакуумной стеклянной колбе может возникнуть электрический ток, если один из находящихся в ней электродов нагреть до высокой температуры. Явление испускания свободных электронов с поверхности нагретых тел называется термоэлектронной эмиссией. Работа, которую нужно совершить для освобождения электрона с поверхности тела, называется работой выхода. Явление термоэлектронной эмиссии объясняется тем, что при повышении температуры тела увеличивается кинетическая энергия некоторой части электронов в веществе. Если кинетическая энергия электрона превысит работу выхода, то он может преодолеть действие сил притяжения со стороны положительных ионов и выйти с поверхности тела в вакууме. На явлении термоэлектронной эмиссии основана работа различных электронных ламп.

Термоэлектронная эми?ссия (эффект Ричардсона, эффект Эдисона) — явление испускания электронов нагретыми телами. Концентрация свободных электронов в металлах достаточно высока, поэтому даже при средних температурах вследствие распределения электронов по скоростям (по энергии) некоторые электроны обладают энергией, достаточной для преодоления потенциального барьера на границе металла. С повышением температуры число электронов, кинетическая энергия теплового движения которых больше работы выхода, растет, и явление термоэлектронной эмиссии становится заметным.

Эле?ктрова?куумный трио?д, или просто трио?д, — электронная лампа, имеющая 3 электрода: термоэлектронный катод (прямого или косвенного накала), анод и одну управляющую сетку. Изобретён и запатентован в 1906 году американцем Ли де Форестом.

Наименование триод в 1950-70 годах, во времена становления полупроводниковой электроники, также употреблялось и для транзисторов — по числу выводов, часто с уточнением: полупроводниковый триод, или с указанием материала: (германиевый триод, кремниевый триод).

Триоды были первыми устройствами, которые использовались для усиления электрических сигналов в начале XX века.

Современный вакуумный диод представляет собой баллон из стекла или металлокерамики, из которого откачан воздух до давления 10-6 - 10-7 мм рт. ст. Внутри него размещены два электрода (рис. 1). Один из них — катод — имеет вид вертикального металлического цилиндра, покрываемого обычно слоем оксида щелочно-земельных металлов — бария, стронция, кальция. Такой катод называют оксидным. При нагревании поверхность оксидного катода испускает гораздо больше электронов, чем поверхность катода из чистого металла. Внутри катода расположен изолированный проводник, нагреваемый постоянным или переменным током. Нагретый катод испускает электроны, достигающие анода. Анод лампы представляет собой круглый или овальный цилиндр, имеющий общую ось с катодом. Схематическое изображение диода показано на рисунке 2 (изображен диод с катодом прямого накала).

Магнитное поле

25)1. Магнитное поле порождается электрическим током ( = движущимися зарядами).

2. Магнитное поле обнаруживается по действию на электрический ток ( = движущиеся заряды).

3. Подобно электрическому полю, магнитное поле существует реально независимо от нас, от наших знаний о нём. Экспериментальным доказательством реальности магнитного поля, как и реальности электрического поля, является факт существования электромагнитных волн (то есть посылка и приём радио- и телевизионных сигналов).

Опыт Эрстеда — классический опыт, проведённый в 1820 году Эрстедом и являющийся первым экспериментальным доказательством воздействия электрических токов на магниты.

Суть опыта

Ганс Христиан Эрстед помещал над магнитной стрелкой прямолинейный металлический проводник, направленный параллельно стрелке. При пропускании через проводник электрического тока стрелка поворачивалась почти перпендикулярно проводнику. При изменении направления тока стрелка разворачивалась на 180°. Аналогичный разворот наблюдался, если провод переносился на другую сторону, располагаясь не над, а под стрелкой.

Принято считать, что это открытие было совершенно случайно: профессор Эрстед демонстрировал студентам опыт по тепловому воздействию электрического тока, при этом на экспериментальном столе находилась также и магнитная стрелка. Один из студентов обратил внимание профессора на то, что в момент замыкания электрической цепи стрелка немного отклонялась. Позднее Эрстед повторил опыт с более мощными батареями, усилив тем самым эффект. При этом сам он в своих поздних работах опровергал случайный характер открытия: «Все присутствующие в аудитории — свидетели того, что я заранее объявил о результате эксперимента. Открытие, таким образом, не было случайностью…»[2].

Магнитное поле проявляется около постоянных магнитов и проводников, по которым идет электрический ток. Широко распространенным индикатором магнитного поля является магнитная стрелка (компас). С помощью этого индикатора можно обнаружить, что магниты разноименными полюсами притягиваются, а одноименными — отталкиваются. Это взаимодействие описывается по схеме: магнит — поле — магнит. Иначе говоря, вокруг магнита существует магнитное поле, которое действует на другие магниты, в частности на магнитные стрелки или намагничивающиеся частицы железа (железные опилки).

Идентифицировать магнитное поле тока в плоскости, перпендикулярной проводнику, помогают железные опилки и магнитные стрелки. Пространственная ориентация опилок и стрелок изменяется на противоположную (на 180°) при изменении направления тока в проводнике. Это значит, что величина, характеризующая магнитное поле (она называется магнитной индукцией), будет векторной. Линии магнитной индукции для прямого проводника (рис. 36) с током являются концентрическими окружностями с центром на оси проводника. Они замкнуты, т. е. не имеют начала и конца. Магнитное поле с замкнутыми линиями магнитной индукции называется вихревым.

26)Магнитная индукция Bвектор — векторная величина, являющаяся силовой характеристикой магнитного поля (его действия на заряженные частицы) в данной точке пространства. Определяет, с какой силой Fвектор магнитное поле действует на заряд q,

движущийся со скоростью Uвектор. Более конкретно,Bвектор,что сила Лоренца Fвектор,действующая со стороны магнитного поля на заряд q,движущийся со скоростью Uвектор,равная: Fвектор=q[Uвектор * Bвектор]

где косым крестом обозначено векторное произведение, U — угол между векторами скорости и магнитной индукции (направление вектора F перпендикулярно им обоим и направлено по правилу буравчика).

Вихревое движение — движение жидкости или газа, при котором мгновенная скорость вращения элементарных объёмов среды не равна нулю. Количественной мерой завихренности служит вектор w=rot U,где v — скорость жидкости; w называют вектором вихря или просто завихренностью. Движение называется безвихревым или потенциальным, если w = 0, в противном случае имеет место вихревое движение.

27)Закон Био?—Савара—Лапла?са — физический закон для определения вектора индукции магнитного поля, порождаемого постоянным электрическим током. Был установлен экспериментально в 1820 году Био и Саваром и сформулирован в общем виде Лапласом. Лаплас показал также, что с помощью этого закона можно вычислить магнитное поле движущегося точечного заряда (считая движение одной заряженной частицы током).

Закон Био—Савара—Лапласа играет в магнитостатике ту же роль, что и закон Кулона в электростатике. Закон Био—Савара—Лапласа можно считать главным законом магнитостатики, получая из него остальные ее результаты.

В современной формулировке закон Био—Савара—Лапласа чаще рассматривают как следствие двух уравнений Максвелла для магнитного поля при условии постоянства электрического поля, т.е. в современной формулировке уравнения Максвелла выступают как более фундаментальные (прежде всего хотя бы потому, что формулу Био—Савара—Лапласа нельзя просто обобщить на общий случай полей, зависящих от времени).

Магнитная проницаемость — физическая величина, коэффициент (зависящий от свойств среды), характеризующий связь между магнитной индукцией {B} и напряжённостью магнитного поля {H} в веществе. Для разных сред этот коэффициент различен, поэтому говорят о магнитной проницаемости конкретной среды (подразумевая ее состав, состояние, температуру итд).

Впервые встречается в работе Вернера Сименса «Beitrage zur Theorie des Elektromagnetismus» («Вклад в теорию электромагнетизма») в 1881 году[1].

Обычно обозначается греческой буквой UМожет быть как скаляром (у изотропных веществ), так и тензором (у анизотропных).

В общем связь соотношение между магнитной индукцией и напряженностью магнитного поля через магнитную проницаемость вводится как Bвектор=UHвектор

Магнитное поле кругового тока, представляющего собой один виток соленоида, подобно полю очень короткого полосового магнита, расположенного в центре витка так, что его ось перпендикулярна плоскости витка.

При поступательном движении буравчика в направлении тока вращательное движение рукоятки буравчика указывает направление силовых линий магнитного поля тока. Вид магнитного поля прямолинейного тока в пространстве.

связь между магнитной индукцией и напряжённостью магнитного поля

Bвектор=u0uHвектор где (u0-магнитная постоянная;u-магнитная проницаемость среды)

28)

Магнитное поле действует с некоторой силой на любой проводник с током,

находящийся в нем.

Если проводник, по которому протекает электрический ток подвесить в магнитном поле, например, между полюсами магнита, то магнитное поле будет действовать на проводник с некоторой силой и отклонять его.

Направление движения проводника

зависит от направления тока в проводнике и от расположения полюсов магнита.

Закон Ампера — закон взаимодействия электрических токов. Впервые был установлен Андре Мари Ампером в 1820 для постоянного тока. Из закона Ампера следует, что параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных — отталкиваются. Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током. Сила dFвектор,с которой магнитное поле действует на элемент объёма dV проводника с током плотности jвектор,находящегося в магнитном поле с индукцией Bвектор. dFвектор=jвектор*Bвектор dV

Правило левой руки Если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а вытянутые четыре пальца совпадали с направлением тока в проводнике, то отогнутый большой палец укажет направление силы, действующей на проводник с током, помещенный в магнитное поле.

29)Параллельные проводники через переключатель присоединяем к источнику тока. При замыкании переключателя наблюдаем либо притяжение проводников, либо их отталкивание. Проводники притягиваются, когда токи в них протекают в одном направлении, и отталкиваются, когда токи в них имеют противоположные направления. Но независимо от направления токов модуль силы взаимодействия проводников имеет одно и то же значение.

30)Из опыта известно, что магнитное поле оказывает действие не только на проводники с током, но и на отдельные заряды, которые движутся в магнитном поле. Сила, которая действует на электрический заряд Q, движущийся в магнитном поле со скоростью v, называется силой Лоренца и задается выражением

F=Q[V,B]где В — индукция магнитного поля, в котором заряд движется.

Сила Лоренца — сила, с которой, в рамках классической физики, электромагнитное поле действует на точечную заряженную частицу. Иногда силой Лоренца называют силу, действующую на движущийся со скоростью v заряд q лишь со стороны магнитного поля, нередко же полную силу — со стороны электромагнитного поля вообще 1, иначе говоря, со стороны электрического E и магнитного B полей. Выражается в СИ как:F=q(Е+[V X B])

\mathbf{F}=q\left(\mathbf{E}+[\mathbf{v}\times\mathbf{B}]\right)

Названа в честь голландского физика Хендрика Лоренца, который вывел выражение для этой силы в 1892 году. За три года до Лоренца правильное выражение было найдено Хевисайдом.

Действие силы Лоренца наблюдается и в природе, и во многих технических устройствах. Например, сила Лоренца отклоняет заряженные частицы, вторгающиеся из космоса и попадающие в магнитное поле Земли, к полярным областям, где они вызывают полярные сияния. Действие магнитного поля на движущиеся заряженные частицы используется для управления движением электронов в телевизионных трубках, в ускорителях и т.д.

31)С фундаментальной точки зрения, как это было указано выше, магнитное поле может создаваться (а значит — в контексте этого параграфа — и ослабляться или усиливаться) переменным электрическим полем, электрическими токами в виде потоков заряженных частиц или магнитными моментами частиц.

Конкретные микроскопическая структура и свойства различных веществ (а также их смесей, сплавов, агрегатных состояний, кристаллических модификаций и т. д.) приводят к тому, что на макроскопическом уровне они могут вести себя достаточно разнообразно под действием внешнего магнитного поля (в частности, ослабляя или усиливая его в разной степени).

В связи с этим вещества (и вообще среды) в отношении их магнитных свойств делятся на такие основные группы:

Антиферромагнетики — вещества, в которых установился антиферромагнитный порядок магнитных моментов атомов или ионов: магнитные моменты веществ направлены противоположно и равны по силе.

Диамагнетики — вещества, намагничивающиеся против направления внешнего магнитного поля.

Парамагнетики — вещества, которые намагничиваются во внешнем магнитном поле в направлении внешнего магнитного поля.

Ферромагнетики — вещества, в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов

Ферримагнетики — материалы, у которых магнитные моменты вещества направлены противоположно и не равны по силе.

К перечисленным выше группы веществ в основном относятся обычные твердые или (к некоторым) жидкие вещества, а также газы. Существенно отличается взаимодействие с магнитным полем сверхпроводников и плазмы.

Разделение веществ на диа-, пара- и ферромагнетики носит в значительной степени условный характер, т.к. первые два вида веществ отличаются по магнитным свойствам от вакуума менее чем на 0,05%. На практике все вещества обычно разделяют на ферромагнитные (ферромагнетики) и неферромагнитные, для которых относительная магнитная проницаемость m может быть принятой равной 1,0.

К ферромагнетикам относятся железо, кобальт, никель и сплавы на их основе. Они имеют магнитную проницаемость, превышающую проницаемость вакуума в несколько тысяч раз. Поэтому все электротехнические устройства, использующие магнитные поля для преобразования энергии, обязательно имеют конструктивные элементы, изготовленные из ферромагнитного материала и предназначенные для проведения магнитного потока. Такие элементы называются магнитопроводы.

Кроме высокой магнитной проницаемости ферромагнетики обладают сильно выраженной нелинейной зависимостью индукции B от напряженности магнитного поля H, а при перемагничивании связь между B и H становится неоднозначной. Функции B(H) имеют особое значение, т.к. только с их помощью можно исследовать электромагнитные процессы в цепях, содержащих элементы, в которых магнитный поток проходит в ферромагнитной среде. Эти функции бывают двух видов: кривые намагничивания и петли гистерезиса.

Ферромагнетики — вещества (как правило, в твёрдом кристаллическом или аморфном состоянии), в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов атомов или ионов (в неметаллических кристаллах) или моментов коллективизированных электронов (в металлических кристаллах). Иными словами, ферромагнетик — такое вещество, которое, при температуре ниже точки Кюри, способно обладать намагниченностью в отсутствие внешнего магнитного поля. Последние исследования в области физики показали, что некоторые ферромагнетики, при создании определенных условий, могут приобретать парамагнетические свойства при температурах, которые существенно выше точки Кюри. Поэтому ферромагнетики, наряду со многими другими магнетическими веществами, остаются, как оказалось, плохо изученными веществами до сих пор.

Гистерезис — свойство систем (физических, биологических и т. д.), мгновенный отклик которых на приложенные к ним воздействия зависит в том числе и от их текущего состояния, а поведение системы на интервале времени во многом определяется её предысторией. Для гистерезиса характерно явление "насыщения", а также неодинаковость траекторий между крайними состояниями (отсюда наличие остроугольной петли на графиках). Не следует путать это понятие с инерционностью поведения систем, которое обозначает монотонное сопротивление системы изменению её состояния.

Электромагнитная индукция