Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
bilety_KSE.doc
Скачиваний:
2
Добавлен:
24.09.2019
Размер:
344.58 Кб
Скачать

21. Корпускулярная концепция описания природы. Основные законы классической механики Ньютона. Концепция дальнодействия.

Современник Исаака Ньютона, нидерландский физик Христиан Гюйгенс, не отвергал существования корпускул, но полагал, что они не излучаются светящимися телами, а заполняют все пространство. Процесс распространения света Гюйгенс представлял не как поступательное движение, а как последовательный процесс передачи удара одной корпускулы о другую.

Сторонники Гюйгенса высказывали мнение, что свет есть распространяющееся колебание в особой среде - "эфире", которым заполнено все мировое пространство и который свободно проникает во все тела. Световое возбуждение от источника света передается эфиром во все стороны.

Так возникли первые волновые представления о природе света. Основную ценность начальной волновой теории света представляет принцип, первоначально сформулированный Гюйгенсом, а затем развитый Френелем. Принцип Гюйгенса - Френеля утверждает, что каждая точка, до которой дошло световое возбуждение, в свою очередь становится центром вторичных волн и передает их во все стороны соседним точкам.

Наиболее наглядно волновые свойства света проявляются в явлениях интерференции и дифракции.

Интерференция света заключается в том, что при взаимном наложении двух волн может происходить усиление или ослабление колебаний. Принцип интерференции был открыт в 1801 г. англичанином Томасом Юнгом (1773- 1829), врачом по профессии. Юнг провел ставший теперь классическим опыт с двумя отверстиями. На экране кончиком булавки прокалывались два близко расположенных отверстия, которые освещались солнечным светом из небольшого отверстия в зашторенном окне. За экраном наблюдалась вместо двух ярких точек серия чередующихся темных и светлых колец.

Необходимым условием наблюдения интерференционной картины является когерентность волн (согласованное протекание колебательных или волновых процессов).

Явление интерференции широко используется в приборах - интерферометрах, с помощью которых осуществляются различные точные измерения и производится контроль чистоты обработки поверхности деталей, а также многие другие операции контроля.

В 1818 г. Френель представил обширный доклад по дифракции света на конкурс Парижской Академии наук. Рассматривая этот доклад, А.Пуассон (1781- 1840) пришел к выводу, что по предлагаемой Френелем теории при определенных условиях в центре дифракционной картины от непрозрачного круглого препятствия на пути света должно быть светлое пятно, а не тень. Это было ошеломляющее заключение. Д.Ф.Араго (1786- 1853) тут же поставил опыт, и расчеты Пуассона подтвердились. Так противоречащее внешне теории Френеля заключение, сделанное Пуассоном, превратилось с помощью опыта Араго в одно из доказательств ее справедливости, а также положило начало признанию волновой природы света.

Явление отклонения света от прямолинейного направления распространения называется дифракцией.

На явлении дифракции основаны многие оптические приборы. В частности, в кристаллографической аппаратуре используется дифракция рентгеновских лучей.

Волновую природу света и поперечность световых волн доказывает, кроме того, и явление поляризации. Сущность поляризации наглядно демонстрирует простой опыт: при пропускании света через два прозрачных кристалла его интенсивность зависит от взаимной ориентации кристаллов. При одинаковой ориентации свет проходит без ослабления. При повороте одного из кристаллов на 90° свет полностью гасится, т.е. не проходит через кристаллы.

Волновую природу света подтверждает и явление дисперсии света. Узкий параллельный пучок белого света при прохождении через стеклянную призму разлагается на пучки света разного цвета. Цветную полоску называют сплошным спектром. Зависимость скорости распространения света в среде от длины волны называется дисперсией света. Дисперсия была открыта И.Ньютоном.

Разложение белого света объясняется тем, что он состоит из электромагнитных волн с разной длиной волны и показатель преломления зависит от длины волны. Наибольшее значение показателя преломления для света с самой короткой длиной волны - фиолетового, наименьшее для самого длинноволнового света - красного. Опыты показали, что в вакууме скорость света одинакова для света с любой длиной волны.

Изучение явлений дифракции, интерференции, поляризации и дисперсии света привело к утверждению волновой теории света.

В 1887 г. Г. Герц при освещении цинковой пластины, соединенной со стержнем электрометра, обнаружил явление фотоэлектрического эффекта. Если пластине и стержню передан положительный заряд, то электрометр не разряжается при освещении пластины. При сообщении пластине отрицательного электрического заряда электрометр разряжается, как только на пластину попадает излучение. Этот опыт доказывает, что с поверхности металлической пластины под действием света вырываются отрицательные электрические заряды. Измерение заряда и массы частиц, вырываемых светом, показало, что эти частицы - электроны. Явление испускания электронов веществом под действием электромагнитного излучения называется фотоэффектом.

Законы Ньютона:

Первый закон устанавливает наличие свойства инертности у материальных тел и постулирует наличие таких систем отсчёта, в которых движение свободного тела происходит с постоянной скоростью (такие системы отсчёта называются инерциальными).

Второй закон Ньютона вводит понятие силы как меры взаимодействия тела и на основе эмпирических фактов постулирует связь между величиной силы, ускорением тела и его инертностью (характеризуемой массой).

Третий закон Ньютона уточняет некоторые свойства введёного во втором законе понятия силы. Им постулируется наличие для каждой силы, действующей на первое тело со стороны второго, равной по величине и противоположной по направлению силы, действующей на второе тело со стороны первого. Наличие третьего закона Ньютона обеспечивает выполнение закона сохранения импульса для системы тел.

Классическое естествознание при описании полей базируется на концепции дальнодействия, в рамках которой поле является некой средой, передающей действие одного материального объекта на другой. По определению, полем называют область пространства, в каждой точке которого на помещенное туда пробное тело (m, q,s), действует однозначно определенная сила. Здесь поле понимается, как область физически измененного пространства, чем-то заполненного.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]