Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы физика 2 семестр.doc
Скачиваний:
12
Добавлен:
22.09.2019
Размер:
745.47 Кб
Скачать

Билет 9

9. Сильномагнитные вещест­ва — ферромагнетики — вещества, обла­дающие спонтанной намагниченностью, т. е. они намагничены даже при отсутствии внешнего магнитного поля. К ферромагне­тикам кроме основного их представите­ля — железа — относятся, напри­мер, кобальт, никель, гадолиний, их спла­вы и соединения.

Для ферромагнетиков зависи­мость J от Н довольно сложная. По мере возрастания Н намагниченность J сначала растет быст­ро, затем медленнее и, наконец, достигает­ся так называемое магнитное насыщение Jнас, уже не зависящее от напряженности поля.

М агнитная индукция В=0(H+J) в слабых полях растет быст­ро с ростом Н вследствие увеличения J, а в сильных полях, поскольку второе сла­гаемое постоянно (J=Jнас), В растет с увеличением Н по линейному закону.

Существенная особенность ферромаг­нетиков — не только большие значения  (например, для железа — 5000), но и зависи­мость  от Н. Вначале  растет с увеличением Н, затем, достигая макси­мума, начинает уменьшаться, стремясь в случае сильных полей к 1 (=В/(0Н)=1+J/Н, поэтому при J=Jнас=const с ростом Н отношение J/H->0, а .->1).

Характерная особенность ферромагне­тиков состоит также в том, что для них зависимость J от H (а следовательно, и В от Н) определяется предысторией на­магничения ферромагнетика. Это явле­ние получило название магнитного гисте­резиса. Если намагнитить ферромагнетик до насыщения (точка 1, рис. 195), а за­тем начать уменьшать напряженность Н намагничивающего поля, то, как по­казывает опыт, уменьшение J описывает­ся кривой 12, лежащей выше кривой 1—0. При H=0 J отличается от нуля, т.е. в ферромагнетике наблюдается оста­точное намагничение Joc. С наличием оста­точного намагничения связано существо­вание постоянных магнитов. Намагничение обращается в нуль под действием поля НC, имеющего направление, противо­положное полю, вызвавшему намагниче­ние.

Напряженность HC называется ко­эрцитивной силой.

При дальнейшем увеличении проти­воположного поля ферромагнетик перемагничивается (кривая 3—4), и при H=-Hнас достигается насыщение (точ­ка 4). Затем ферромагнетик можно опять размагнитить (кривая 4—56) и вновь перемагнитить до насыщения (кривая 6-1).

Таким образом, при действии на фер­ромагнетик переменного магнитного поля намагниченность J изменяется в соответ­ствии с кривой 12—3—4—5—6—1, кото­рая называется петлей гистерезиса. Гистерезис приво­дит к тому, что намагничение ферромагне­тика не является однозначной функцией H, т. е. одному и тому же значению H со­ответствует несколько значений J.

Различные ферромагнетики дают раз­ные гистерезисные петли. Ферромагнетики с малой (в пределах от нескольких тысяч­ных до 1—2 А/см) коэрцитивной силой HC (с узкой петлей гистерезиса) называ­ются мягкими, с большой (от нескольких десятков до нескольких тысяч ампер на сантиметр) коэрцитивной силой (с широ­кой петлей гистерезиса) — жесткими. Ве­личины HC, Jос и max определяют применимость ферромагнетиков для тех или иных практических целей. Так, жесткие ферромагнетики (например, углеродистые и вольфрамовые стали) применяются для изготовления постоянных магнитов, а мяг­кие (например, мягкое железо, сплав же­леза с никелем) —для изготовления сер­дечников трансформаторов.

Ферромагнетики обладают еще одной существенной особенностью: для каждого ферромагнетика имеется определенная температура, называемая точкой Кюри, при которой он теряет свои магнитные свойства. При нагревании образца выше точки Кюри ферромагнетик превращается в обычный парамагнетик.

Процесс намагничения фер­ромагнетиков сопровождается изменени­ем его линейных размеров и объема. Это явление получило название магнитострик­ции.

Природа ферромагнетизма. Согласно представлениям Вейсса, ферромагнетики при температурах ниже точки Кюри обладают спонтанной намаг­ниченностью независимо от наличия внеш­него намагничивающего поля. Спонтанное намагничение, однако, находится в кажу­щемся противоречии с тем, что многие ферромагнитные материалы даже при тем­пературах ниже точки Кюри не намагниче­ны. Для устранения этого противоречия Вейсс ввел гипотезу, согласно которой ферромагнетик ниже точки Кюри разбива­ется на большое число малых макроскопи­ческих областей — доменов, самопроиз­вольно намагниченных до насыщения.

При отсутствии внешнего магнитного поля магнитные моменты отдельных до­менов ориентированы хаотически и ком­пенсируют друг друга, поэтому результи­рующий магнитный момент ферромагнети­ка равен нулю и ферромагнетик не намагничен. Внешнее магнитное поле ори­ентирует по полю магнитные моменты не отдельных атомов, как это имеет место в случае парамагнетиков, а целых об­ластей спонтанной намагниченности. По­этому с ростом Н намагниченность J и магнитная индукции В уже в довольно слабых полях растут очень быстро. Этим объясня­ется также увеличение  ферромагнетиков до максимального значения в слабых по­лях. Эксперименты показа­ли, что зависимость В от Я не является такой плавной, как показано на рис. 193, а имеет ступенчатый вид. Это свидетель­ствует о том, что внутри ферромагнетика домены поворачиваются по полю скачком.

При ослаблении внешнего магнитного поля до нуля ферромагнетики сохраняют остаточное намагничение, так как тепло­вое движение не в состоянии быстро дезо­риентировать магнитные моменты столь крупных образований, какими являются домены. Поэтому и наблюдается явление магнитного гистерезиса (рис.195). Для того чтобы ферромагнетик размагнитить, необходимо приложить коэрцитивную си­лу; размагничиванию способствуют также встряхивание и нагревание ферромагнети­ка. Точка Кюри оказывается той темпера­турой, выше которой происходит разруше­ние доменной структуры.

Существование доменов в ферромагне­тиках доказано экспериментально. Пря­мым экспериментальным методом их на­блюдения является метод порошковых фи­гур. На тщательно отполированную по­верхность ферромагнетика наносится во­дная суспензия мелкого ферромагнитного порошка (например, магнетита). Частицы оседают преимущественно в местах мак­симальной неоднородности магнитного по­ля, т. е. на границах между доменами. Поэтому осевший порошок очерчивает границы доменов и подобную картину мож­но сфотографировать под микроскопом. Линейные размеры доменов оказались рав­ными 10-4—10-2 см.

Принцип действия трансформаторов, при­меняемых для повышения или понижения напряжения переменного тока, основан на явлении взаимной индукции.

Первичная и вторичная катушки (обмот­ки), имеющие соответственно n1 и N2 вит­ков, укреплены на замкнутом железном сердечнике. Так как концы первичной об­мотки присоединены к источнику перемен­ного напряжения с э.д.с. ξ1, то в ней возникает переменный ток I1, создающий в сердечнике трансформатора переменный магнитный поток Ф, который практически полностью локализован в железном сер­дечнике и, следовательно, почти целиком пронизывает витки вторичной обмотки. Изменение этого потока вызывает во вто­ричной обмотке появление э.д.с. взаим­ной индукции, а в первичной — э.д.с. самоиндукции.

Ток I1 первичной обмотки определяется согласно закону Ома: где R1 — сопротивление первичной обмот­ки. Падение напряжения I1R1 на сопро­тивлении R1 при быстропеременных полях мало по сравнению с каждой из двух э.д.с., поэтому . Э.д.с. взаимной индукции, возникающая во вторичной обмотке,

Получим, что э.д.с., возникающая во вто­ричной обмотке, где знак минус показывает, что э.д.с. в первичной и вторичной обмотках противоположны по фазе.

Отношение числа витков N2/N1, по­казывающее, во сколько раз э.д.с. во вторичной обмотке трансформатора боль­ше (или меньше), чем в первичной, на­зывается коэффициентом трансформации.

Пренебрегая потерями энергии, кото­рые в современных трансформаторах не превышают 2 % и связаны в основном с выделением в обмотках джоулевой теп­лоты и появлением вихревых токов, и при­меняя закон сохранения энергии, можем записать, что мощности тока в обеих об­мотках трансформатора практически оди­наковы: ξ2I2ξ1I1, найдем ξ21=I1/I2 = N2/N1, т. е. токи в обмотках обратно пропорцио­нальны числу витков в этих обмотках.

Если N2/N1>1, то имеем дело с повы­шающим трансформатором, увеличиваю­щим переменную э.д.с. и понижающим ток (применяются, например, для переда­чи электроэнергии на большие расстояния, так как в данном случае потери на джоулеву теплоту, пропорциональные квадрату силы тока, снижаются); если N2/N1<1, то имеем дело с понижающим трансформатором, уменьшающим э.д.с. и повышающим ток (применяются, на­пример, при электросварке, так как для нее требуется большой ток при низком напряжении).

Трансформатор, состоящий из одной об­мотки, называется автотрансформатором. В случае повышающего автотрансформа­тора э.д.с. подводится к части обмотки, а вторичная э.д.с. снимается со всей об­мотки. В понижающем автотрансформато­ре напряжение сети подается на всю об­мотку, а вторичная э.д.с. снимается с части обмотки.

 

11.Гармоническое колебание — явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса. Например, гармонически колеблется величина, изменяющаяся во времени следующим образом:

или ,где х — значение изменяющейся величины, t — время, остальные параметры — постоянные: А — амплитуда колебаний, ω — циклическая частота колебаний, — полная фаза колебаний, — начальная фаза колебаний. Обобщенное гармоническое колебание в дифференциальном виде

Виды колебаний:

Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия. Чтобы свободные колебания были гармоническими, необходимо, чтобы колебательная система была линейной (описывалась линейными уравнениями движения), и в ней отсутствовала диссипация энергии (последняя вызвала бы затухание).

Вынужденные колебания совершаются под воздействием внешней периодической силы. Чтобы они были гармоническими, достаточно чтобы колебательная система была линейной (описывалась линейными уравнениями движения), а внешняя сила сама менялась со временем как гармоническое колебание (то есть чтобы зависимость от времени этой силы была синусоидальной).

Механическое гармоническое колебание - это прямолинейное неравномерное движение, при котором координаты колеблющегося тела (материальной точки) изменяются по закону косинуса или синуса в зависимости от времени.

Согласно этому определению, закон изменения координаты в зависимости от времени имеет вид:

где wt - величина под знаком косинуса или синуса; w- коэффициент, физический смысл которого раскроем ниже; А - амплитуда механических гармонических колебаний. Уравнения (4.1) являются основными кинематическими уравнениями механических гармонических колебаний.

Электромагнитными колебаниями называются периодические изменения напряженности Е и индукции В.Электромагнитными колебаниями являются радиоволны, микроволны, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновские лучи, гамма-лучи.

Вывод формулы

Электромагнитные волны как универсальное явление были предсказаны классическими законами электричества и магнетизма, известными как уравнения Максвелла. Если вы внимательно посмотрите на уравнение Максвелла в отсутствие источников (зарядов или токов), то обнаружите, что вместе с возможностью, что ничего не случится, теория к тому же допускает нетривиальные решения изменения электрического и магнитного полей. Начнем с уравнений Максвелла для вакуума:

где — векторный дифференциальный оператор (набла)

Одно из решений — самое простейшее.

Чтобы найти другое, более интересное решение, мы воспользуемся векторным тождеством, которое справедливо для любого вектора, в виде:

Чтобы посмотреть как мы можем использовать его, возьмем операцию вихря от выражения (2):

Левая часть эквивалентна:

где мы упрощаем, используя выше приведенное уравнение (1).

Правая часть эквивалентна:

Уравнения (6) и (7) равны, таким образом эти результаты в векторнозначном дифференциальном уравнении для электрического поля, а именно

Применяя аналогичные исходные результаты в аналогичном дифференциальном уравнении для магнитного поля:

Эти дифференциальные уравнения эквивалентны волновому уравнению:

где c0 — скорость волны в вакууме;f — описывает смещение.

Или еще проще: где — оператор Д’Аламбера:

Заметьте, что в случае электрического и магнитного полей скорость:

Дифференциальное уравнение гармонических колебаний материальной точки , или , где m — масса точки; k — коэффициент квазиупругой силы (k=тω2).

Гармонический осциллятор в квантовой механике представляет собой квантовый аналог простого гармонического осциллятора, при этом рассматривают не силы, действующие на частицу, а гамильтониан, то есть полную энергию гармонического осциллятора, причём потенциальная энергия предполагается квадратично зависящей от координат. Учёт следующих слагаемых в разложении потенциальной энергии по координате ведёт к понятию ангармонического осциллятора

Гармонический осциллятор (в классической механике) — это система, которая при смещении из положения равновесия испытывает действие возвращающей силы F, пропорциональной смещению x (согласно закону Гука):

где k — положительная константа, описывающая жёсткость системы.

Гамильтониан квантового осциллятора массы m, собственная частота которого ω, выглядит так:

В координатном представлении , . Задача об отыскании уровней энергии гармонического осциллятора сводится к нахождению таких чисел E при которых следующее дифференциальное уравнение в частных производных имеет решение в классе квадратично интегрируемых функций.

Под ангармоническим осциллятором понимают осциллятор с неквадратичной зависимостью потенциальной энергии от координаты. Простейшим приближением ангармонического осциллятора является приближение потенциальной энергии до третьего слагаемого в ряде Тейлора:

12. Пружинный маятник — механическая система, состоящая из пружины с коэффициентом упругости (жёсткостью) k (закон Гука), один конец которой жёстко закреплён, а на втором находится груз массы m.

Когда на массивное тело действует упругая сила, возвращающая его в положение равновесия, оно совершает колебания около этого положения.Такое тело называют пружинным маятником. Колебания возникают под действием внешней силы. Колебания, которые продолжаются после того, как внешняя сила перестала действовать, называют свободными. Колебания, обусловленные действием внешней силы, называют вынужденными. При этом сама сила называется вынуждающей.

В простейшем случае пружинный маятник представляет собой движущееся по горизонтальной плоскости твердое тело, прикрепленное пружиной к стене.

Второй закон Ньютона для такой системы при условии отсутствия внешних сил и сил трения имеет вид:

Если на систему оказывают влияние внешние силы, то уравнение колебаний перепишется так:

, где f(x) — это равнодействующая внешних сил соотнесённая к единице массы груза.

В случае наличия затухания, пропорционального скорости колебаний с коэффициентом c:

Период пружинного маятника:

Математи́ческий ма́ятник — осциллятор, представляющий собой механическую систему, состоящую из материальной точки, находящейся на невесомой нерастяжимой нити или на невесомом стержне в однородном поле сил тяготения. Период малых собственных колебаний математического маятника длины l неподвижно подвешенного в однородном поле тяжести с ускорением свободного падения g равен и не зависит[1] от амплитуды и массы маятника.

Дифференциальное уравнение пружинного маятника х=Асos (wоt+jo).

Уравнение колебаний маятника

Колебания математического маятника описываются обыкновенным дифференциальным уравнением вида

где w ― положительная константа, определяемая исключительно из параметров маятника. Неизвестная функция; x(t) ― это угол отклонения маятника в момент от нижнего положения равновесия, выраженный в радианах; , где L ― длина подвеса, g ― ускорение свободного падения. Уравнение малых колебаний маятника около нижнего положения равновесия (т. н. гармоническое уравнение) имеет вид:

Маятник, совершающий малые колебания, движется по синусоиде. Поскольку уравнение движения является обыкновенным ДУ второго порядка, для определения закона движения маятника необходимо задать два начальных условия — координату и скорость, из которых определяются две независимых константы:

где A — амплитуда колебаний маятника, — начальная фаза колебаний, w — циклическая частота, которая определяется из уравнения движения. Движение, совершаемое маятником, называется гармоническими колебаниями

Физический маятник — осциллятор, представляющий собой твёрдое тело, совершающее колебания в поле каких-либо сил относительно точки, не являющейся центром масс этого тела, или неподвижной оси, перпендикулярной направлению действия сил и не проходящей через центр масс этого тела.

Момент инерции относительно оси, проходящей через точку подвеса:

Пренебрегая сопротивлением среды, дифференциальное уравнение колебаний физического маятника в поле силы тяжести записывается следующим образом:

Приведённая длина — это условная характеристика физического маятника. Она численно равна длине математического маятника, период которого равен периоду данного физического маятника. Приведённая длина вычисляется следующим образом:

где I — момент инерции относительно точки подвеса, m — масса, a — расстояние от точки подвеса до центра масс.

Колебательный контур — осциллятор, представляющий собой электрическую цепь, содержащую соединённые катушку индуктивности и конденсатор. В такой цепи могут возбуждаться колебания тока (и напряжения).Колебательный контур — простейшая система, в которой могут происходить свободные электромагнитные колебания

езонансная частота контура определяется так называемой формулой Томсона:

-параллельный колебательный контур

Пусть конденсатор ёмкостью C заряжен до напряжения . Энергия, запасённая в конденсаторе составляет

Магнитная же энергия, сосредоточенная в катушке, максимальна и равна

, где L— индуктивность катушки, — максимальное значение тока.

Энергия гармонических колебаний

При механических колебаниях колеблющееся тело (или материальная точка) обладает кинетической и потенциальной энергией. Кинетическая энергия тела W:

Полная энергия в контуре:

Электромагнитные волны переносят энергию. При распространении волн возникает поток электромагнитной энергии. Если выделить площадь S , ориентированную перпендикулярно направлению распространения волны, то за малое время Δt через площадку протечет энергия ΔWэм, равная ΔWэм = (wэ + wм)υSΔt

13. Сложение гармонических колебаний одного направления и одинаковой частоты

Колеблющееся тело может принимать участие в нескольких колебательных процессах, тогда следует найти результирующее колебание, другими словами, колебания необходимо сложить. В данном разделе будем складывать гармонические колебания одного направления и одинаковой частоты

применяя метод вращающегося вектора амплитуды, построим графически векторные диаграммы этих колебаний (рис. 1). Tax как векторы A1 и A2 вращаются с одинаковой угловой скоростью ω0, то разность фаз (φ2 - φ1) между ними будет оставаться постоянной. Значит, уравнение результирующего колебания будет (1)

В формуле (1) амплитуда А и начальная фаза φ соответственно определяются выражениями

(2)

Значит, тело, участвуя в двух гармонических колебаниях одного направления и одинаковой частоты, совершает при этом также гармоническое колебание в том же направлении и с той же частотой, что и складываемые колебания. Амплитуда результирующего колебания зависит от разности фаз (φ2 - φ1) складываемых колебаний.

Рис.1

Сложение гармонических колебаний одного направления с близкими частотами

Пусть амплитуды складываемых колебаний равны А, а частоты равны ω и ω+Δω, причем Δω<<ω. Выберем начало отсчета так, чтобы начальные фазы обоих колебаний были равны нулю:

Складывая эти выражения и учитывая, что во втором сомножителе Δω/2<<ω, получим

(3)

Результирующее колебание (3) можно считать как гармоническое с частотой ω , амплитуда Аσ которого изменяется по следующему периодическому закону: (4)

Периодические изменения амплитуды колебания, которые возникают при сложении двух гармонических колебаний одного направления с близкими частотами, называются биениями.

Биения возникают от того, что один из двух сигналов постоянно отстаёт от другого по фазе и в те моменты, когда колебания происходят синфазно, суммарный сигнал оказывается усилен, а в те моменты, когда два сигнала оказываются в противофазе, они взаимно гасят друг друга. Эти моменты периодически сменяют друг друга по мере того как нарастает отставание.

График колебаний при бияниях

Найдем результат сложения двух гармонических колебаний одинаковой частоты ω, которые происходят во взаимно перпендикулярных направлениях вдоль осей х и у. Начало отсчета для простоты выберем так, чтобы начальная фаза первого колебания была равна нулю, и запишем это в виде (1)

где α — разность фаз обоих колебаний, А и В равны амплитудам складываемых колебаний. Уравнение траектории результирующего колебания определим исключением из формул (1) времени t. Записывая складываемые колебания как

и заменяя во втором уравнении на и на , найдем после несложных преобразований уравнение эллипса, у которого оси ориентированы произвольно относительно координатных осей: (2)

Поскольку траектория результирующего колебания имеет форму эллипса, то такие колебания называются эллиптически поляризованными.

Размеры осей эллипса и его ориентация зависят от амплитуд складываемых колебаний и разности фаз α. Рассмотрим некоторые частные случаи, которые представляют для нас физический интерес:

1) α = mπ (m=0, ±1, ±2, ...). В этом случае эллипс становится отрезком прямой (3)

где знак плюс соответствует нулю и четным значениям m (рис. 1а), а знак минус — нечетным значениям m (рис. 2б). Результирующее колебание есть гармоническое колебание с частотой ω и амплитудой , которое совершается вдоль прямой (3), составляющей с осью х угол . В этом случае имеем дело с линейно поляризованными колебаниями;

2) α = (2m+1)(π/2) (m=0, ± 1, ±2,...). В этом случае уравнение станет иметь вид

Фигу́ры Лиссажу́ — замкнутые траектории, прочерчиваемые точкой, совершающей одновременно два гармонических колебания в двух взаимно перпендикулярных направлениях. Впервые изучены французским учёным Жюлем Антуаном Лиссажу. Вид фигур зависит от соотношения между периодами (частотами), фазами и амплитудами обоих колебаний. В простейшем случае равенства обоих периодов фигуры представляют собой эллипсы, которые при разности фаз 0 или вырождаются в отрезки прямых, а при разности фаз П/2 и равенстве амплитуд превращаются в окружность. Если периоды обоих колебаний неточно совпадают, то разность фаз всё время меняется, вследствие чего эллипс всё время деформируется. При существенно различных периодах фигуры Лиссажу не наблюдаются. Однако, если периоды относятся как целые числа, то через промежуток времени, равный наименьшему кратному обоих периодов, движущаяся точка снова возвращается в то же положение — получаются фигуры Лиссажу более сложной формы. Фигуры Лиссажу вписываются в прямоугольник, центр которого совпадает с началом координат, а стороны параллельны осям координат и расположены по обе стороны от них на расстояниях, равных амплитудам колебаний.

где A, B — амплитуды колебаний, a, b — частоты, δ — сдвиг фаз

14. Затухающие колебания происходят в замкнутой механической системе

, в которой имеются потери энергии на преодоление сил

сопротивления (β ≠ 0) или в закрытом колебательном контуре , в

котором наличие сопротивления R приводит к потерям энергии колебаний на

нагревание проводников (β ≠ 0).

В этом случае общее дифференциальное уравнение колебаний (5.1)

примет вид : x′′ + 2βx′ + ω0 x = 0 .

Логарифмический декремент затухания χ есть физическая величина, обратная числу колебаний, по истечении которых амплитуда А уменьшается в e раз.

АПЕРИОДИЧЕСКИЙ ПРОЦЕСС-переходный процесс в динамич. системе, при к-ром выходная величина, характеризующая переход системы от одного состояния к другому, либо монотонно стремится к установившемуся значению, либо имеет один экстремум (см. рис.). Теоретически может длиться бесконечно большое время. А. п. имеют место, напр., в системах автоматич. управления.

Графики апериодических процессов изменения параметра x(t) системы во времени: хуст - установившееся (предельное) значение параметра

Наименьшее активное сопротивление контура, при котором процесс является апериодическим, называется критическим сопротивлением

Также это такое сопротивление, при котором в контуре реализуется режим свободных незатухающих колебаний.

15. Колебания, которые возникают под действием внешней периодически изменяющейся силы или внешней периодически изменяющейся э.д.с., называются соответственно вынужденными механическими и вынужденными электромагнитными колебаниями.

Дифференциальное уравнение примет следующий вид:

q′′ + 2βq′ + ω0 q = cos( ωt ) .

Резона́нс (фр. resonance, от лат. resono — откликаюсь) — явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами системы. Увеличение амплитуды — это лишь следствие резонанса, а причина — совпадение внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы. При помощи явления резонанса можно выделить и/или усилить даже весьма слабые периодические колебания. Резонанс — явление, заключающееся в том, что при некоторой частоте вынуждающей силы колебательная система оказывается особенно отзывчивой на действие этой силы. Степень отзывчивости в теории колебаний описывается величиной, называемой добротность. Явление резонанса впервые было описано Галилео Галилеем в 1602 г в работах, посвященных исследованию маятников и музыкальных струн.

Наиболее известная большинству людей механическая резонансная система — это обычные качели. Если вы будете подталкивать качели в соответствии с их резонансной частотой, размах движения будет увеличиваться, в противном случае движения будут затухать. Резонансную частоту такого маятника с достаточной точностью в диапазоне малых смещений от равновесного состояния, можно найти по формуле: ,

где g это ускорение свободного падения (9,8 м/с² для поверхности Земли), а L — длина от точки подвешивания маятника до центра его масс. (Более точная формула довольно сложна, и включает эллиптический интеграл). Важно, что резонансная частота не зависит от массы маятника. Также важно, что раскачивать маятник нельзя на кратных частотах (высших гармониках), зато это можно делать на частотах, равных долям от основной (низших гармониках).

Амплитуда и фаза вынужденных колебаний.

Рассмотрим зависимость амплитуды А вынужденных колебаний от частоты ω (8.1)

Из формулы (8.1) следует, что амплитуда А смещения имеет максимум. Чтобы определить резонансную частоту ωрез — частоту, при которой амплитуда А смещения достигает максимума, — нужно найти максимум функции (1), или, что то же самое, минимум подкоренного выражения. Продифференцировав подкоренное выражение по ω и приравняв его нулю, получим условие, определяющее ωрез:

Это равенство выполняется при ω=0, ± , у которых только лишь положительное значение имеет физический смысл. Следовательно, резонансная частота (8.2)

Явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающей силы (частоты вынуждающего переменного напряжения) к частоте, равной или близкой собственной частоте колебательной системы, называется резонансом. При δ2«ω2 значение ωрез практически совпадает с собственной частотой ω0 колебательной системы. Подставляя (8.2) в формулу (8.1), получим (8.3)

Из формулы (3) вытекает, что при малом затухании (δ2«ω2) резонансная амплитуда смещения

где Q —добротность колебательной системы, – рассмотренное выше статическое отклонение. Отсюда следует, что добротность Q характеризует резонансные свойства колебательной системы: чем больше Q, тем больше Aрез.

Чем больше коэффициент затухания δ, тем ниже максимум резонансной кривой.

16. Последовательный колебательный контур является простейшей резонансной (колебательной) цепью. Состоит последовательный колебательный контур, из последовательно включенных катушки индуктивности и конденсатора. При воздействии на такую цепь переменного (гармонического) напряжения, через катушку и конденсатор будет протекать переменный ток, величина которого вычисляется по закону Ома: I = U / ХΣ , где ХΣ - сумма реактивных сопротивлений последовательно включенных катушки и конденсатора (используется модуль суммы).

как зависят реактивные сопротивления конденсатора и катушки индуктивности от частоты приложенного переменного напряжения. Для катушки индуктивности, эта зависимость будет иметь вид:

Из формулы видно, что при увеличении частоты, реактивное сопротивление катушки индуктивности увеличивается. Для конденсатора зависимость его реактивного сопротивления от частоты будет выглядеть следующим образом:

Добротность колебательного контура для последовательных колебательных контуров-

Параллельный колебательный контур

В различных радиотехнических устройствах наряду с последовательными колебательными контурами часто (даже чаще, чем последовательные) применяют параллельные колебательные контуры На рисунке приведена принципиальная схема параллельного колебательного контура. Здесь параллельно включены два реактивных элемента с разным характером реактивности Как известно, при параллельном включении элементов складывать их сопротивления нельзя - можно лишь складывать проводимости. На рисунке приведены графические зависимости реактивных проводимостей катушки индуктивности BL = 1/ωL, конденсатора ВC = -ωC, а также суммарной проводимости ВΣ, этих двух элементов, являющаяся реактивной проводимостью параллельного колебательного контура.

Для параллельного колебательного контура, в котором индуктивность, емкость и сопротивление включены параллельно, добротность вычисляется: ,где R, L и C — сопротивление, индуктивность и ёмкость резонансной цепи, соответственно.

17. Если в каком-либо месте упругой (твердой, жидкой или газообразной) среды возбудить колебания ее частиц, то вследствие взаимодействия между частицами это колебание будет распространяться в среде от частицы к частице с некоторой скоростью v. Процесс распространения колебаний в пространстве называется волной.

Частицы среды, в которой распространяется волна, не вовлекаются волной в поступательное движение, они лишь совершают колебания около своих положений равновесия. В зависимости от направления колебаний частиц по отношению к направлению распространения волны, различают продольные и поперечные волны.

Продольная волна – это волна, в которой частицы среды колеблются вдоль направления распространения волны.

Поперечная волна - это волна, в которой частицы среды колеблются в направлениях, перпендикулярных к направлению распространения волны.

Упругие поперечные волны могут возникать лишь в среде, обладающей сопротивлением сдвигу. Поэтому в жидкой и газообразной средах возможно возникновение только продольных волн. В твердой среде возможно возникновение как продольных, так и поперечных волн.

Принцип Гюйгенса — Френеля — основной постулат волновой теории, описывающий и объясняющий механизм распространения волн, в частности, световых.

Принцип Гюйгенса — Френеля является развитием принципа, который ввёл Христиан Гюйгенс в 1678 году: каждая точка поверхности, достигнутая световой волной, является вторичным источником световых волн. Огибающая вторичных волн становится фронтом волны в следующий момент времени. Принцип Гюйгенса объясняет распространение волн, согласующееся с законами геометрической оптики, но не может объяснить явлений дифракции. Огюстен Жан Френель в 1815 году дополнил принцип Гюйгенса, введя представления о когерентности и интерференции элементарных волн, что позволило рассматривать на основе принципа Гюйгенса — Френеля и дифракционные явления.Принцип Гюйгенса — Френеля формулируется следующим образом:

Каждый элемент волнового фронта можно рассматривать, как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн.

Волновая поверхность и фронт волны.

Геометрическое место точек, колеблющихся в одной фазе, называется волновой поверхностью. Волновая поверхность, отделяющая часть пространства, в которой колебания происходят, от той части, где еще нет колебаний, называется фронтом волны. Именно фронт волны перемещается со скоростью равной фазовой скорости волны. В случае одномерной синусоидальной волны уравнение волновой поверхности имеет следующий вид:

Этому условию в каждый момент времени удовлетворяет только одна точка оси ОХ, координата х которой равна:

Различным значениям фазы волны φ соответствуют различные волновые поверхности, каждая из которых в одномерных волнах вырождается в точку. Из последней формулы видно, что волновые поверхности с течением времени перемещаются в среде со скоростью, равной , т.е. фазовой скоростью, которая равна

Таким образом, для синусоидальной волны скорость распостранения поверхности постоянной фазы совпадает со скоростью распространения волны.

Уравнение бегущей волны:

В векторном виде уравнение волны будет выглядеть так:

здесь r - радиус вектор точки пространства; j0 - начальная фаза колебаний в начале координат.

ВОЛНОВОЕ ЧИСЛО k:

Распространение волн в однородной изотропной среде в общем случае описывается волновым уравнением (дифференциальным) уравнением в частных производных

или

где v - фазовая скорость, - оператор Лапласа.

18.Энергия волны. При распространении волны в пространстве от какого-либо источника происходит и распространение энергии; частицы среды, вовлекаемые в колебательное движение, получают энергию от волны. Проследим, как энергия от источника распространяется в пространстве.

Пусть v* - скорость частиц среды в какой-то момент времени в какой-то точке пространства (или, точнее, в физически малом объёме dV). Объёмная плотность кинетической энергии Wk запишется (r - плотность среды):

Объёмная плотность потенциальной энергии упруго деформируемой среды равна:

n - фазовая скорость волны, e - относительная деформация среды.

Учитывая, что:

имеем: Причём в каждой точке пространства объёмные плотности кинетической и потенциальной энергий равны. Этот вывод справедлив для любых волн в упругих средах: полная механическая энергия волны в каждой точке есть сумма двух равных слагаемых, потенциальной и кинетической энергий.

Из вышеприведённой формулы следует, что среднее за период значение объёмной плотности энергии равно:

Звуковые волны

Под звуком понимают упругие волны среды, воспринимаемые ухом человека. Опыт показывает, что наше ухо воспринимает как звук механические колебания, частота которых лежит в пределах от 20 Гц до 20 кГц. Упругие волны с частотой менее 20 Гц называются инфразвуком, с частотой более 20 кГц - ультразвуком.

Звук может распространяться в виде продольных и поперечных волн. В газообразной и жидкой фазе возникают только продольные волны, в твердых телах, помимо продольных, возникают также и поперечные волны.

В зависимости от структуры спектра колебания среды различают шумы и музыкальные звуки. Шумы - это непериодические колебания. Им соответствует сплошной спектр, т. е. набор частот, непрерывно заполняющих некоторый интервал. Музыкальные звуки обладают линейчатым спектром с кратными частотами, следовательно, они представляют собой периодические колебания.

Для слушающего человека сразу становятся очевидными две характеристики звука, а именно его громкость и высота тона. Каждой из этих субъективных характеристик соответствует величина, измеряемая физическими методами. Громкость связана с энергией звуковой волны, которая представляет продольные колебания воздуха. Согласно уравнению (4.8) энергия волны пропорциональна квадрату амплитуды.

Человеческое ухо способно воспринимать звуки с интенсивностью вплоть до 10-12 Вт/м2 (порог слышимости) и до 1 Вт/м2 (так называемый порог болевого ощущения). Громкость зависит также от частоты звука. Поэтому величина, которую мы воспринимаем, как громкость, не прямо пропорциональна интенсивности. Но, чем больше интенсивность, тем звук громче. Высота тона звука определяется частотой упругих колебаний, воспринимаемых ухом.

Звук характеризуется тембром. Тембр звука, или иногда называют его окраской звука, определяется амплитудами и частотой дополнительных обертонов (звуки более высокой частоты). На основной тон могут накладываться обертоны с различными амплитудами, что и определяет тембр звука.

ЭФФЕКТ ДОПЛЕРА В АКУСТИКЕ

Эффект Доплера описывает сдвиг частоты сигнала в зависимости от относительного движения источника и приемника. Так волна, посланная источником, который удаляется от приемника, будет приниматься им на меньшей частоте по сравнению с волной от неподвижного источника или от источника, приближающегося к приемнику. Если же приемник приближается к неподвижному источнику, то частота принимаемой им волны будет больше по сравнению с неподвижным приемником или приемником, удаляющимся от источника. Это явление обнаружил Христиан Доплер в 1842 году.

1. Источник движется, приемник остаётся неподвижным.

Предположим, что источник, излучающий импульсы с периодом T, движется со скоростью v относительно среды по направлению к покоящемуся приемнику. В момент времени t=0 расстояние между источником и приемником равно L. Первый импульс достигнет приемника в момент времени t=L/u, где u - скорость волны. Второй импульс будет послан к приемнику в момент времени t=T, когда расстояние между источником и приемником равно L1=L-vT. Таким образом, второй импульс достигнет приемника в момент времени t1=T+(L-vT)/u. В результате, приемник будет регистрировать импульсы с периодом

Tдоп=t1-t= T(1- v/u)

Таким образом, частота сигнала fдоп, регистрируемого приемником, равна:

fдоп=f/(1-v/u) (источник движется навстречу приемнику)

где f - частота сигнала излучаемого источником. Мы видим из этого выражения, что когда источник движется по направлению к приёмнику, частота регистрируемого сигнала увеличивается на величину fv/u, называемую доплеровским сдвигом частоты. Наоборот, когда источник движется от приемника, частота регистрируемого сигнала уменьшается в соответствии с выражением:

fдоп=f/(1+v/u) (источник движется от приемника)

В случае движущегося источника эффект Доплера возникает из-за того, что изменяется длина волны, распространяющейся от источника к приемнику. Это хорошо видно на анимации.

2.Приемник движется, источник остаётся неподвижным.

Рассмотрим далее случай, когда приемник движется, а источник волны неподвижен. В этом случае длина волны не меняется и доплеровский сдвиг частоты возникает из-за того, что изменяется скорость волны w относительно приемника:

w = u + v (приемник движется по направлению к источнику)

w = u - v (приемник движется по направлению от источника)

Так как fдоп=w/l , а исходная частота источника f=u/l0 и l =l0 мы получаем

fдоп=f(1+v/u) (приемник движется по направлению к источнику)

fдоп=f(1-v/u) (приемник движется по направлению от источника)

Принцип суперпозиции (наложения) волн заключается в следующем: в линейных средах волны распространяются независимо друг от друга, то есть волна не изменяет свойства среды, и другая волна распространяется так, будто первой волны нет. Это позволяет вычислять итоговую волну как сумму всех волн, распространяющихся в данной среде.

При сложении двух или более синусоидальных волн результирующая волна в общем случае уже не будет синусоидальной.

Рассмотрим в качестве примера результат сложения двух плоских однонаправленных волн с одинаковыми амплитудами и разными, но близкими частотами и волновыми числами:

Полученная волна не является синусоидальной, так как величина перед синусом (амплитуда волны) меняется со временем и координатой. Однако, если на длине волны (и в течении периода) её изменения малы (что имеет место при малых dk и dw), волна ещё похожа на синусоиду; её иногда называют квазисинусоидальной. График этой волны представляет собой то, что мы в теории колебаний назвали биениями; однако здесь, в отличие от маятника, биения происходят не только во времени, но и в пространстве.

Как мы можем видеть из этих рассуждений, сдвиг частоты будет разным в зависимости от того, что движется: приемник или источник. Особенно это заметно, если скорость источника или приемника близка к скорости волны. На первый взгляд может показаться что это противоречит принципу относительности: какая разница что движется - источник или приемник. На самом деле важно не относительное движение приемника и источника, а их движение относительно упругой среды, в которой распространяется волна. При этом скорость распространения волны не зависит от движения источника и приемника. В отличие от акустической волны для электромагнитной волны явления сдвига частоты протекают совершенно одинаково при движении источника и приемника.

Явление интерференции возникает при наложении когерентных волн.

Когерентные волны - это волны, имеющие одинаковые частоты, постоянную разность фаз, а колебания происходят в одной плоскости.

Результат суперпозиции волн зависит от того, в каких фазах накладываются друг на друга колебания.

Если волны от источников А и Б придут в точку С в одинаковых фазах, то произойдет усиление колебаний; если же — в противоположных фазах, то наблюдается ослабление колебаний.

Постоянное во времени явление взаимного усиления и ослабления колебаний в разных точках среды в результате наложения когерентных волн называется интерференцией. В результате в пространстве образуется устойчивая картина чередования областей усиленных и ослабленных колебаний.

Условиe максимума

Для двух когерентных волн можно написать пропорцию: .

Если колебания вибраторов А и Б совпадают по фазе и име­ют равные амплитуды, то ,

где k=0, 1, 2, ...

Тогда

Если разность хода волн равна целому числу волн (т. е. четному числу полуволн), то в точке наложения этих волн образуется интерференционный максимум.

Условие минимума

Если волны от вибраторов А и Б придут в точку С в противофазе, то они погасят друг друга: А=0. Тогда . Следовательно,

Если разность хода волн равна нечетному числу полуволн, то в точке наложения этих волн образуется интерференционный минимум.

19. Электромагнитная волна - процесс распространения электромагнитного поля в пространстве. Электромагнитная волна представляет собой процесс последовательного, взаимосвязанного изменения векторов напряжённости электрического и магнитного полей, направленных перпендикулярно лучу распространения волны, при котором изменение электрического поля вызывает изменения магнитного поля, которые, в свою очередь, вызывают изменения электрического поля.

Существование электромагнитных волн было предсказано М. Фарадеем еще в 1832 г. Дж. Максвелл в 1865 г. в результате анализа предложенной им системы уравнений (см. Максвелла уравнения), описывающей электромагнитное поле, теоретически показал, что электромагнитное поле в вакууме может существовать и в отсутствие источников — зарядов и токов. Поле без источников имеет вид волн, распространяющихся с конечной скоростью, которая в вакууме равна скорости света: с = 299792458±1,2 м/с. Совпадение скорости распространения электромагнитных волн в вакууме с измеренной ранее скоростью света позволило Максвеллу сделать вывод о том, что свет представляет собой электромагнитные волны. Подобное заключение в дальнейшем легло в основу электромагнитной теории света.

В 1888 г. теория электромагнитных волн получила экспериментальное подтверждение в опытах Г. Герца. Используя источник высокого напряжения и вибраторы (см. Герца вибратор), Герцу удалось выполнить тонкие эксперименты по определению скорости распространения электромагнитной волны и ее длины. Экспериментально подтвердилось, что скорость распространения электромагнитной волны равна скорости света, что доказывало электромагнитную природу света

Фазовая скорость ЭМВ определяется выражением ,

где – скорость света в вакууме; и –электрическая и магнитная постоянные; ε и μ – соответственно, электрическая и магнитная проницаемость среды.

Скорость распространения электромагнитных волн в среде зависит от ее электрической и магнитной проницаемости. Величину называют абсолютным показателем преломления. С учетом последнего имеем: и

Основными свойствами электромагнитных волн являются:

1)поглощение-это процесс поглощения одного или нескольких фотонов другой частицей, в результате чего энергия фотонов переходит в энергию этой частицы.

2)рассеяние — рассеяние электромагнитных волн видимого диапазона при их взаимодействии с веществом. При этом происходит изменение пространственного распределения, частоты, поляризации оптического излучения, хотя часто под рассеянием понимается только преобразование углового распределения светового потока.

3)преломление (рефра́кция) — изменение направления распространения волн электромагнитного излучения, возникающее на границе раздела двух прозрачных для этих волн сред или в толще среды с непрерывно изменяющимися свойствами.

4) отражение-физический процесс взаимодействия волн или частиц с поверхностью, изменение направления волнового фронта на границе двух сред с разными свойствами, в котором волновой фронт возвращается в среду, из которой он пришёл. Одновременно с отражением волн на границе раздела сред, как правило, происходит преломление волн (за исключением случаев полного внутреннего отражения).

5) интерференция— перераспределение интенсивности света в результате наложения(суперпозиции) нескольких световых волн. Это явление сопровождается чередующимися в пространстве максимумами и минимумами интенсивности. Её распределение называется интерференционной картиной.

6)дифракция — явление, которое проявляет себя как отклонение от законов геометрической оптики при распространении волн. Она представляет собой универсальное волновое явление и характеризуется одними и теми же законами при наблюдении волновых полей разной природы.

7)поляризация- явление нарушения симметрии распределения возмущений в поперечной волне (например, напряжённостей электрического или магнитного полей в электромагнитных волнах) относительно направления её распространения. В продольной волне поляризация возникнуть не может, так как возмущения в этом типе волн всегда совпадают с направлением распространения.

Монохроматическая волна — модель в физике, удобная для теоретического описания явлений волновой природы, означающая, что в спектр волны входит всего одна составляющая по частоте.

Монохроматическая волна — строго гармоническая (синусоидальная) волна с постоянными во времени частотой, амплитудой и начальной фазой.

20.Энергия элктромагнитных волн

Как показывает опыт, электромагнитные волны могут производить различные действия: нагревание тел при поглощении света, вырывание электронов с поверхности металла под действием света (фотоэффект). Это свидетельствует о том, что электромагнитные волны переносят энергию. Эта энергия заключена в распространяющихся в пространстве электрическом и магнитном полях.

В курсе электричества и магнетизма было показано, что объемная плотность энергии электрического поля равна

а магнитного поля

где и – электрическая и магнитная постоянные. Таким образом, полная плотность энергии электромагнитной волны равна

Плотность энергии электромагнитного поля можно представить в виде:

Пото́к эне́ргии — это количество энергии, переносимое через некоторую произвольную площадку в единицу времени.

Единицей измерения потока энергии является ватт, равный одному джоулю, делённому на секунду.

Вектор Пойнтинга (также вектор Умова — Пойнтинга) — вектор плотности потока энергии электромагнитного поля, одна из компонент тензора энергии-импульса электромагнитного поля. Вектор Пойнтинга S можно определить через векторное произведение двух векторов:

где E и H — векторы напряжённости электрического и магнитного полей соответственно.

Этот вектор по модулю равен количеству энергии, переносимой через единичную площадь, нормальную к S, в единицу времени. Своим направлением вектор определяет направление переноса энергии.

Поскольку тангенциальные к границе раздела двух сред компоненты E и H непрерывны (см. граничные условия), то вектор S непрерывен на границе двух сред.

Материальность электромагнитного поля проявляется физически в том, что оно производит силовое действие на частицы, обладающие электрическим зарядом, электрическим или магнитным моментами, а так же в том, что оно обладает энергией, массой и импульсом. При таких свойствах электромагнитное поле проявляет себя как реальный вид материи, а не как теоретическая модель, оторванная от реальности.

Как вид материи, электромагнитное поле может быть сплошным и не обладать дискретной структурой, но может быть и в дискретном квантованном состоянии. Квантованное электромагнитное поле подчинено законам квантовой механики, тогда как сплошное классическое электромагнитное поле подчинено уравнениям Максвелла, и применение квантовой механики не требует.

Применение электромагнитных волн в технике и связи.

Впервые электромагнитные волны были использованы через семь лет после опытов Герца. 7 мая 1895 г. преподаватель физики офицерских минных классов А. С. Попов (1859—1906) на заседании Русского физико-химического общества продемонстрировал первый в мире радиоприемник, открывший возможность практического использования электромагнитных волн для беспроволочной связи, преобразившей жизнь человечества. Первая переданная в мире радиограмма содержала лишь два слова: «Генрих Герц». Изобретение радио Поповым сыграло огромную роль для распространения и развития теории Максвелла.

Электромагнитные волны сантиметрового и миллиметрового диапазонов, встречая на своем пути преграды, отражаются от них. Это явление лежит в основе радиолокации — обнаружения предметов (например, самолетов, кораблей и т. д.) на больших расстояниях и точного определения их положения. Помимо этого, методы радиолокации используются для наблюдения прохождения и образования облаков, движения метеоритов в верхних слоях атмосферы и т. д.

Для электромагнитных волн характерно явление дифракции — огибания волнами различных препятствий. Именно благодаря дифракции радиоволн возможна устойчивая радиосвязь между удаленными пунктами, разделенными между собой выпуклостью Земли. Длинные волны (сотни и тысячи метров) применяются в фототелеграфии, короткие волны (несколько метров и меньше) применяются в телевидении для передачи изображений на небольшие расстояния (немногим больше пределов прямой видимости). Электромагнитные волны используются также в радио-геодезии для очень точного определения расстояний с помощью радиосигналов, в радиоастрономии для исследования радиоизлучения небесных тел и т. д. Полное описание применения электромагнитных волн дать практически невозможно, так как нет областей науки и техники, где бы они не использовались.