Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Алгебраические структуры.docx
Скачиваний:
16
Добавлен:
22.09.2019
Размер:
940.35 Кб
Скачать

10. Матрицы. Определение матрицы. Сложение матриц, умножение матрицы на число и транспонирование матрицы. Их свойства.

Ма́трица — математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля (например, целых или комплексных чисел), которая представляет собой совокупность строк и столбцов, на пересечении которых находятся её элементы. Количество строк и столбцов матрицы задают размер матрицы. Хотя исторически рассматривались, например, треугольные матрицы[1], в настоящее время говорят исключительно о матрицах прямоугольной формы, так как они являются наиболее удобными и общими.

Матрицы широко применяются в математике для компактной записи систем линейных алгебраических или дифференциальных уравнений. В этом случае, количество строк матрицы соответствует числу уравнений, а количество столбцов — количеству неизвестных. В результате решение систем линейных уравнений сводится к операциям над матрицами.

Матрицы допускают следующие алгебраические операции:

  • сложение матриц, имеющих один и тот же размер;

  • умножение матриц подходящего размера (матрицу, имеющую столбцов, можно умножить справа на матрицу, имеющую строк);

  • умножение матрицы на элемент основного кольца или поля (т. е. скаляр).

Операции над матрицами

Умножение матрицы на число

Умножение матрицы на число (обозначение: ) заключается в построении матрицы , элементы которой получены путём умножения каждого элемента матрицы на это число, то есть каждый элемент матрицы равен

Свойства умножения матриц на число

1. 1*A = A;

2. (Λβ)A = Λ(βA)

3. (Λ+β)A = ΛA + βA

4. Λ(A+B) = ΛA + ΛB

Сложение матриц

Сложение матриц есть операция нахождения матрицы , все элементы которой равны попарной сумме всех соответствующих элементов матриц и , то есть каждый элемент матрицы равен

Свойства сложения матриц

5.коммутативность;

6.ассоциативность;

7.сложение с нулевой матрицей;

8.существование противоположной матрицы;

Все свойства линейных операций повторяют аксиомы линейного пространства и поэтому справедлива теорема:

Множество всех матриц одинаковых размеров MxN образуют линейное пространство над полем P (полем всех действительных или комплексных чисел), поэтому каждая матрица является и вектором этого пространства.

Умножение матриц

Умножение матриц (обозначение: , реже со знаком умножения ) — есть операция вычисления матрицы , элементы которой равны сумме произведений элементов в соответствующей строке первого множителя и столбце второго.

Количество столбцов в матрице должно совпадать с количеством строк в матрице . Если матрица имеет размерность , — , то размерность их произведения есть .

Свойства умножения матриц

1.ассоциативность;

2.произведение не коммутативно;

3.произведение коммутативно в случае умножения с единичной матрицей;

4.справедливость дистрибутивного закона;

5.(ΛA)B = Λ(AB) = A(ΛB);

Комплексное сопряжение

Если элементами матрицы являются комплексные числа, то комплексно сопряжённая (не путать с эрмитово сопряжённой! см. далее) матрица равна . Здесь — число, комплексно сопряжённое к .

Транспонирование и эрмитово сопряжение

Транспонирование уже обсуждалось выше: если , то . Для комплексных матриц более употребительно эрмитово сопряжение: . С точки зрения операторного взгляда на матрицы, транспонированная и эрмитово сопряжённая матрица — это матрицы оператора, сопряжённого относительно скалярного или эрмитова произведения, соответственно.

Транспонированная матрицаматрица , полученная из исходной матрицы заменой строк на столбцы.

Формально, транспонированная матрица для матрицы размеров — матрица размеров , определённая как AT[i, j] = A[j, i].

Например,

и

Свойства транспонированных матриц

Дважды транспонированная матрица А равна исходной матрице А.

Транспонированная сумма матриц равна сумме транспонированных матриц.

Транспонированное произведение матриц равно произведению транспонированных матриц

При транспонировании можно выносить скаляр.

Определитель транспонированной матрицы равен определителю исходной матрицы.