Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции-ЭПУ-Бычков.doc
Скачиваний:
46
Добавлен:
22.09.2019
Размер:
9.35 Mб
Скачать

6. Преобразователи

6.1. Инверторы

В инверторах коммутация тока осуществляется электронными приборами, работающими в ключевом режиме. При работе в этом режиме электронный прибор может находиться в одном из двух состояний: открытом или закрытом. В обоих состояниях мощность, рассеиваемая на электродах, очень мала. Инвертор переходит из закрытого состояния в открытое и обратно очень быстро, так что и за время коммутации потери незначительны. Поэтому при работе в ключевом режиме к. п. д. инверторов может достигать 80-90%.

Инверторы классифицируют по ряду признаков. В зависимости от типа применяемых электронных приборов различают ламповые, транзисторные, тиратронные и тиристорные инверторы. В зависимости от системы управления их подразделяют на инверторы с внешним возбуждением и самовозбуждением. В инверторах с внешним возбуждением в состав системы управления входит авто­номный генератор, создающий управляющие сигналы в виде им­пульсов или гармонических колебаний. В инверторах с самовозбуж­дением коммутация осуществляется за счет положительной об­ратной связи в самом инверторе. Инверторы классифицируют также по числу фаз выходного напряжения (одно- и трехфазные); по форме выходного напряжения (синусоидальная, прямоугольная).

В устройствах автоматики и связи на транспорте наиболее широко распространены транзисторные и тиристорные инверторы.

Транзисторные инверторы. Инверторы выполняют по одно- и двухтактным схемам.

Однотактная схема инвертора с внешним возбуждением (рисунок 6.2, а) состоит из транзистора VT и дросселя L. Коллекторный ток транзистора VТ определяется управляющим напряжением uэб, приложенным между базой и эмиттером, и имеющим форму прямоугольных импульсов (рисунок 6.2, б).

При положительной полярности управляющего напряжения транзистор VТ открыт, и все напряжение источника постоянного тока U0 приложено к нагрузке. Ток дросселя iL возрастает почти линейно. Ток, отдаваемый источником iH, равен сумме токов, протекающих через дроссель и нагрузку.

Рисунок 6.2 – Схема однотактного инвертора с внешним возбуждением (а) и временные диаграммы напряжений и токов (б)

Рисунок 6.3 – Схема однотактного транзисторного инвертора с самовозбуждением (а) и выходные характеристики транзистора (б)

После поступления управляющего импульса отрицательной полярности транзистор закрывается, но ток в нагрузке Iн будет существовать за счет энергии, запасенной в дросселе. Направление тока изменяется, а его значение будет уменьшаться по экспоненци­альному закону. Так как среднее значение напряжения на дросселе и нагрузке равно нулю, то среднее значение напряжения на нагрузке при закрытом транзисторе равно U0. Следовательно, максимальное напряжение на нагрузке UHmax превышает среднее значение на U. Изменение напряжения Uэк зависит от индуктивности дросселя. Чем больше индуктивность, тем меньше U и форма кривой напряже­ния на нагрузке ближе к прямоугольной. Напряжение на закрытом транзисторе Uэк больше чем в 2 раза превышает напряжение источника тока U0. Достоинством рассматриваемой схемы инвер­тора является ее простота, а к недостаткам относятся: несиммет­ричность формы кривой выходного напряжения и зависимость ее от нагрузки; небольшая мощность в нагрузке - доли или единицы ватт.

Однотактная схема инвертора с самовозбуждением (рисунок 6.3, а) состоит из транзистора VТ и трансформатора Т с тремя обмотками, первичной /, вторичной // и обмоткой обратной связи III. В схеме возникают колебания при выполнении двух условий: баланса фаз и баланса амплитуд. Условие баланса фаз заключается в том, что напряжение, подаваемое на базу, должно быть в противофазе с напряжением на коллекторе транзистора. При выполнении этого условия обеспечивается положительная обратная связь. Условие баланса амплитуд заключается в том, что напряжение обратной связи должно быть не менее определенного значения, необходимого для поддержания генерации. Оба условия достигаются подключе­нием обмотки обратной связи с определенным числом витков.

При подключении источника тока с напряжением U0 в цепях базы и коллектора протекают токи Iк и Iэк. За счет индуктивности L первичной обмотки ток Iэк будет возрастать по закону, близкому к линейному . При увеличении тока Iэк возрастает магнитный поток в сердечнике трансформатора, наводится э.д.с. в обмотках и появляется ток в нагрузке. Рабочая точка на этом этапе смещается по характеристике транзистора (рисунок 6.3, 6) из начала координат (точка О) в область насыщения (точка А), где возрастание тока Iк прекращается. При этом магнитный поток также прекращает возрастать, вследствие чего изменяется поляр­ность э.д.с, в обмотках трансформатора, уменьшается ток базы транзистора, а затем и ток коллектора. Этот процесс носит лавино­образный характер, который приводит к быстрому запиранию транзистора. При этом рабочая точка смещается в область отсечки (точка Б). К моменту насыщения транзистора в сердечнике на­капливается магнитная энергия W=0.5LIK2. При запирании тран­зистора ток в нагрузке будет продолжаться за счет энергии, запа­сенной в трансформаторе. Направление тока в нагрузке изменится, а его значение будет уменьшаться. К моменту, когда ток в нагрузке будет равен нулю, восстановится первоначальное значение потен­циалов в цепи обратной связи, рабочая точка сместится в начале координат (точка О) и процессы будут повторяться. Преобразова­тели этого типа целесообразно применять при высоком выходном напряжении, малых токах и мощностях в нагрузке, достигающих нескольких десятков ватт, их к. п. д. 60-70%. Схему используют и в качестве задающего генератора в инверторе с внешним возбуждением.

Двухтактная схема инвертора с самовозбуждением (рисунок 6.4, а) состоит из двух транзисторов VT1 и VT2, а также из трансформатора Т с тремя обмотками, сердечник которого выполнен из материала с прямоугольной петлей гистерезиса. Отрицательное смещение на базы транзисторов подается со средней точки делителя напряжения R1R2, к которому подключено входное напряжение U0. Сопротив­ление резистора R1 много меньше, чем у резистора R2, поэтому между базой и эмиттером каждого транзистора действует неболь­шое напряжение, приходящееся на резистор R1 и составляющее десятые доли вольта. Конденсатор С облегчает запуск инвертора. В момент включения питания ток заряда конденсатора проходит через резистор R1. При этом на нем кратковременно увеличивается падение напряжения и на базах транзисторов возрастает отрица­тельный потенциал.

После включения инвертора в первый момент благодаря нали­чию отрицательного смещения на базах открываются оба транзис­тора. Параметры транзисторов не могут быть абсолютно одина­ковыми, поэтому коллекторные токи будут несколько отличаться друг от друга. Предположим, что ток транзистора VT1 превышает ток транзистора VT2, что приведет к тому, что в трансформаторе будет преобладать магнитный поток, возникающий за счет тока iк1. Благодаря этому э.д.с., возникшие в других обмотках за счет взаимоиндукции, будут иметь полярность, указанную на схеме. На базе транзистора VT1 появится отрицательный потенциал относи­тельно эмиттера, а на базе VT2 - положительный. При этом тран­зистор VT1 будет продолжать открываться и ток iк1 увеличиваться, а транзистор VТ2 начнет закрываться. Этот процесс нарастает лавинообразно. К моменту времени t1 транзистор VТ1 открыт и находится в режиме насыщения (рисунок 6.4, в и г), а транзистор VТ2 закрыт и находится в режиме отсечки (рисунок 6.4, д). С момента насыщения транзистора VТ1 к обмотке I’ трансформатора будет приложено почти все напряжение источника постоянного тока (рисунок - 6.4, д). На этом заканчивается процесс включения инвертора.

Рисунок 6.4 – Схема двухтактного транзисторного инвертора с самовозбуждением (а), характеристика намагничивания сердечника трансформатора (б); временные диаграммы напряжений и токов (в-е)

Дальше начинается линейный процесс. Индукция в сердечнике трансформатора нарастает линейно со скоростью

,

где UKH - напряжение коллектор - эмиттер насыщенного транзистора;

S -площадь поперечного сечения сердечника

w -число витков обмотки I’.

Коллекторный ток транзистора

;

где i’H-ток нагрузки, приведенный к первичной обмотке;

i’0- ток, нейтрализующий намагничивание, создаваемое током отсечки запертого транзистора IK0; iμ - ток намагничивания.

Ток намагничивания и нейтрализации на этом этапе очень малы. Линейный процесс продолжается до момента времени t2, ког­да индукция в сердечнике достигнет индукции насыщения BS (рисунок 6.4,6). С этого момента начинается коммутационный процесс. Ток коллектора нарастает из-за увеличения тока намагничивания iμ. При этом степень насыщения транзистора падает. Заряд неоснов­ных носителей в его базе уменьшается. К моменту времени t3 коллекторный ток транзистора возрастает настолько, что он выхо­дит из насыщения. Напряжение на транзисторе начинает возрастать (рисунок 6.4,5), что приведет к уменьшению напряжения на первичной обмотке трансформатора и положит начало закрывания транзисто­ра VT1. При запирании транзистора VT1 сердечник трансформатора Т начинает перемагничиваться, что приводит к появлению на обмотках трансформатора напряжений, противоположных по знаку тем, которые были ранее (см. рисунок 6.4,а). Процесс развивается лавинообразно и к моменту времени t4 приводит к запиранию транзистора VT1 и открыванию транзистора VT2.

После переключения транзисторов вновь начинается линейный процесс, который сопровождается изменением индукции от + ВS до —ВS. В дальнейшем процессы повторяются. При этом импульсы напряжения на вторичной обмотке трансформатора и на нагрузке будут иметь форму, близкую к прямоугольной (рисунок 6.4, е).

На коллекторном переходе закрытого транзистора действует сумма напряжений источника постоянного тока U0 и э.д.с., индуци­рованная в коллекторной обмотке закрытого транзистора (см. рисунок 6.4, а), поэтому для успешной работы в инверторе транзисторы должны иметь допустимое напряжение Uкэ больше 2U0. Частота колебаний инвертора с насыщающимся трансформатором в основ­ном определяется конструктивными данными трансформатора и напряжением источника постоянного тока . Опти­мальная частота колебаний лежит в диапазоне 400-600 Гц. При работе инвертора на повышенных частотах следует учитывать длительность коммутационных процессов, которые зависят от инерционности транзисторов и схемы инвертора. Для приведенной схемы она практически равна времени рассасывания заряда неос­новных носителей в базах транзисторов. Особенностью схемы инвертора является наличие значительных выбросов коллекторных токов транзисторов, возникающих в процессе коммутации. Данный преобразователь применяют при мощностях не более 50-100 Вт, обеспечивая к.п.д. порядка 70-80%. При больших мощностях существенно увеличиваются потери в трансформаторе. Недостат­ком преобразователя является сильное влияние тока и характера нагрузки на частоту, форму и выходное напряжение.

Двухтактная схема инвертора с внешним возбуждением (рисунок 6.5) позволяет полностью развязать цепи задающего генерато­ра ЗГ и нагрузки Rн. В качестве инверторов с внешним возбужде­нием чаще всего используют схемы двухтактных усилителей мощности с выходным трансформатором. Задающий генератор ЗГ представляет собой маломощный преобразователь с самовозбужде­нием, не отличающийся от рассмотренных ранее.

Рисунок 6.5 – Схема двухтактного инвертора с внешним возбуждением

Рисунок 6.6 – Схема мостового параллельного тиристорного инвертора

Диоды VD1 и VD2 защищают транзисторы от перенапряжения и обеспечивают возвращение реактивной энергии, накапливаемой в трансформаторе, источнику постоянного тока. При этом форма кривой напряжения приближается к прямоугольной. Выходной трансформатор преобразователя доводить до насыщения нет необ­ходимости, благодаря чему уменьшаются потери и к.п.д. может достигать 80-90%. Преобразователи этого типа выполняются мощ­ностью до 500 Вт.

Тиристорные инверторы. В качестве элементов в схемах инверто­ров широко применяют управляемые вентили -тиристоры, которые по сравнению с транзисторами имеют такие особенности.

Тиристоры открываются при подаче в цепь управляющего элект­рода импульса тока. Однако у открытого прибора управляющие электроды теряют управляющие свойства, и закрывание тиристора практически может быть достигнуто снижением анодного напряже­ния до нуля или подачей отрицательного напряжения на анод. В большинстве инверторов в качестве элемента, обеспечивающего закрывание тиристоров, используют коммутирующий конденсатор, включаемый последовательно или параллельно по отношению к нагрузке. В зависимости от этого схемы инверторов называют последовательными или параллельными. Наиболее широкое расп­ространение получили схемы параллельных инверторов.

Мостовая схема параллельного инвертора (рисунок 6.6) содержит тиристоры VS1, VS2, VS3 и VS4, включенные по мостовой схеме. В одну диагональ моста включен источник постоянного тока U0, а в другую - первичная обмотка трансформатора Т. Параллельно пер­вичной обмотке трансформатора включен коммутирующий кон­денсатор С. Дроссель L- обеспечивает постоянство тока, потребляе­мого от источника. Принцип работы схемы заключается в следую­щем. Управляющие импульсы от внешнего источника подаются одновременно на тиристоры VS1 и VS4, которые открываются, и через них протекает ток iL, равный сумме тока первичной обмотки трансформатора i1, и тока заряда конденсатора ic. Коммутирующий конденсатор заряжается до напряжения Uс ~ U0. Затем управляю­щие импульсы открывают тиристоры VS2 и VS3, вследствие чего к тиристорам VS1 и VS4 будет приложено отрицательное напряжение U0 и они запираются. Ток в первичной обмотке трансформатора меняет направление, конденсатор С перезаряжается до напряжения UС = Uо с противоположной полярностью. Затем под воздействием управляющих импульсов вновь открываются тиристоры VS1 и VS4, и процесс повторяется.

Рисунок 6.7 – Схема параллельного инвертора на тиристорах (а) и временные диаграммы токов и напряжений (б)

Двухтактная схема параллельного инвертора на тиристорах (рисунок 6.7, а) получила наиболее широкое распространение. В схеме используют такие же элементы, как и в мостовой, но ток коммути­руется только двумя тиристорами VS1 и VS2. К концу отрезка времени t0 – t1 (рисунок 6.7,6) тиристор VS1 закрыт, а VS2 открыт, конденсатор С заряжен и имеет полярность, указанную на схеме в скобках. В момент времени t1 на управляющий электрод тиристора VS1 подается положительный импульс iу1, и он открывается. Напряжение на конденсаторе С через малое сопротивление откры­того тиристора VS1 оказывается приложенным к еще открытому

тиристору VS2 и в течение очень малого промежутка времени (микросекунд) его закрывает. Ток iа1 открытого тиристора VS1, протекая по верхней половине первичной обмотки трансформатора Т, наводит в нижней обмотке э.д.с. с полярностью (см. рисунок 6.7,а). Конденсатор С под воздействием разности потенциалов на концах первичной обмотки трансформатора начинает перезаряжаться. По мере заряда конденсатора ток iс уменьшается. Напряжение uа1 на открытом тиристоре мало, а его ток iа1, равный току iL при достаточно большой индуктивности дросселя L остается практи­чески неизменным. В момент времени t2 на управляющий электрод: тиристора VS2 подается положительный импульс iу2, который его открывает. Напряжение на конденсаторе С (его полярность указана на рисунке 6.7,а без скобок) вызывает быстрое запирание тиристора VS1. При этом ток конденсатора резко изменяет направление, и он вновь начинает перезаряжаться. Таким образом, процесс коммутации тиристоров периодически повторяется, и на выходе инвертора возникает переменное напряжение uн. Для нормальной работы инвертора необходимо, чтобы время работы tδ, в течение которого на аноде тиристора сохранялся отрицательный потенциал, было бы больше времени выключения tвыкл. В противном случае закрывае­мый тиристор вновь откроется, что приведет к короткому замыка­нию источника постоянного тока.