Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
210782_5C06E_lucenko_a_i_metodicheskie_ukazaniy...doc
Скачиваний:
4
Добавлен:
20.09.2019
Размер:
2.11 Mб
Скачать
  1. Глоссарий

А

Аддитивная функция – функция множеств- элементов алгебры A, для которой из условия ш следует, что .

Алгебра множеств – система подмножеств A множества , элементы которой удовлетворяют следующим требованиям:

а) A; б) для любых A и B, принадлежащих A, следует, что A и A; в) если A, то A.

Б

Борелевская алгебра множеств B( ) – система подмножеств множества действительных чисел R, получающаяся путём применения операций объединения, пересечения и дополнения к элементам системы , где a и b – произвольные действительные числа.

В

Вероятностное пространство <,A, P> - тройка объектов, где

 - множество элементарных исходов;

A - -алгебра случайных событий;

P – вероятностная функция.

Д

Дискретная случайная величина – случайная величина, областью возможных значений которой является не более чем счётное множество D действительных чисел . Закон распределения вероятностей дискретной случайной величины задаётся путём определения набора положительных чисел , таких, что . Здесь: .

Дисперсия случайной величины - мера разброса значений случайной величины около её математического ожидания.

Доверительный интервал - интервал, в котором с вероятностью, не меньшей чем , находится значение неизвестной числовой характеристики , то есть интервал, для которого справедливо: .

З

Закон больших чисел (ЗБЧ) – совокупность теорем, в которых на последовательность случайных величин , налагаются условия, при которых их среднее арифметическое сходится по вероятности к постоянной величине – среднему арифметическому их математических ожиданий: .

И

Измеримое пространство <,A> - пара объектов, где - множество элементарных исходов, A - алгебра случайных событий, на которой вводится числовая функция множеств , которая при выполнении условий нормированности и аддитивности, называется вероятностной мерой множества A.

К

Классическое определение вероятности – определение вероятности наступления случайного события, основанное на равновозможности реализации элементарных исходов конечного множества элементарных исходов . Если мощность множества равна , а мощность подмножества A, являющегося случайным событием, равна , то по классическому определению вероятности вероятность наступления случайного события A будет равна .

Ковариационный момент – смешанный центральный момент второго порядка двумерной случайной величины:

.

Компонента случайного вектора – скалярная случайная величина , являющаяся проекцией случайного вектора на k-тую координатную ось . То есть, если и - проектор, отображающий в , то является композицией отображений:

.

Коэффициент линейной корреляции – мера статистической силы связи между случайными величинами. Вычисляется по формуле . Применяется в тех случаях, когда статистическая связь имеет линейный характер.

Критерий проверки основной гипотезы – случайная величина, статистика элементов выборки, закон распределения вероятностей которой зависит от предполагаемой гипотезы.

М

Математическое ожидание – числовая характеристика случайной величины, . Математическое ожидание есть среднее значение случайной величины . Интерпретируется как координата центра тяжести единичной массы распределённой на числовой оси.

Множество элементарных исходов – множество, элементами, которого является все возможные элементарные исходы. В результате проведения испытания всегда реализуется один, и только один элементарный исход.

Н

Начальный момент k-того порядка – числовая характеристика случайной величины, являющаяся значением абсолютно сходящегося несобственного интеграла от функции по функции распределения случайной величины, то есть: .

Независимость случайных величин. Случайные величины и называются независимыми, если закон распределения вероятностей одной из них не зависит от другой случайной величины.

Точнее: пусть случайные величины и являются компонентами двумерной случайной величины , принимающей значения в . Эти компоненты называются независимыми, если для любого множества B, B( 2), представимого как декартово произведение , и , будет справедливо:

,

Где и - частные вероятностные функции компонент.

Независимость случайных величин непрерывного типа – Случайные величины непрерывного типа и (компоненты двумерного случайного вектора) будут независимыми тогда, только тогда, когда для любой пары выполняется равенство , где - плотность вероятности двумерного случайного вектора , а и - плотности вероятностей его компонент и .

Независимость случайных величин дискретного типа – Случайные величины дискретного типа и (компоненты двумерного случайного вектора) будут независимыми тогда, только тогда, когда для любой пары выполняется равенство , где , а и .

Независимость случайных событий. Случайные события называются независимыми, если условная вероятность наступления любого из них равна его безусловной вероятности: или .

Непрерывная случайная величина – случайная величина, областью возможных значений которой является множество D мощности континуум и положительной меры Лебега. Закон распределения вероятностей непрерывной случайной величины задаётся путём определения на этом множестве плотности вероятности - кусочно-непрерывной, неотрицательной функции, такой что .

Несмещённость точечной оценки. Точечная оценка числовой характеристики называется несмещённой, если .

О

Остаточная дисперсия – мера разброса значений одной из компонент (например ) двумерной случайной величины около её математического ожидания, вызванного внутренними свойствами этой компоненты. При линейном виде статистической связи между компонентами величина остаточной дисперсии компоненты равна , где - коэффициент линейной корреляции между компонентами и .

Ошибка I рода – отклонение верной гипотезы . Возникает в том случае, когда при справедливости в реальности гипотезы наблюдаемое значение критерия попадает в критическую область . Вероятность ошибки I рода равна .

Ошибка II рода – принятие неверной гипотезы . Возникает в том случае, когда при справедливости в реальности гипотезы наблюдаемое значение критерия попадает в область допустимых значений . Вероятность ошибки II рода равна .

П

Повторные независимые испытания – серия одинаковых испытаний, в каждом из которых с постоянными вероятностями p и q может произойти только одно из взаимно противоположных событий A или .

Плотность вероятности – неотрицательная, кусочно-непрерывная функция, удовлетворяющая условию: . Плотность вероятности описывает распределение вероятностей случайной величины непрерывного типа.

Р

Распределение - (распределение Пирсона) распределение вероятностей случайной величины , где все независимые случайные величины, имеющие нормальное распределение вероятностей N(0;1).

Распределение Стьюдента – (t-распределение) распределение вероятностей случайной величины , где все независимые случайные величины, имеющие нормальное распределение вероятностей N(0;1).

Распределение Фишера-Снедекора – (F-распределение) распределение вероятностей случайной величины .

Ряд распределения – таблица, состоящая из двух строк, с помощью которой задаётся закон распределения дискретной случайной величины:

.

Где или ; . Всегда .

С

Свёртка функций распределения – несобственный интеграл, определяющий функцию распределения случайной величины, являющейся суммой независимых случайных величин. Если , то функция распределения будет равна: , где и - функции распределения случайных величин-слагаемых.

Состоятельность точечной оценки. Точечная оценка числовой характеристики называется состоятельной, если она сходится по вероятности к этой точечной оценке, то есть: .

Статистика – любая функция элементов выборки : .

Сходимость по вероятности. Последовательность случайных величин сходится по вероятности к случайной величине (обозначение: ), если выполняется условие .

Сходимость по распределению. Последовательность случайных величин сходится по распределению к случайной величине (обозначение: ), если соответствующая последовательность функций распределения слабо сходится к функции распределения случайной величины ( ).

У

Условная вероятность - вероятность наступления случайного события A, вычисленная при предположении, что случайное событие B произошло. Определяется по формуле: .

Условная плотность вероятности - плотность вероятности условной случайной величины , является законом распределения вероятностей второй компоненты при любом фиксированном значении первой компоненты. Определяется по формуле: , где - плотность вероятности двумерной случайной величины , - частная плотность вероятности первой компоненты .

Ф

Функция распределения – функция , описывающая изменение вероятности случайного события при изменении x, то есть . Определяя функцию распределения , мы задаём закон распределения вероятностей случайной величины .

Функция распределения вектора - функция , описывающая изменение вероятности случайного события , где , при изменении , то есть . Определяя функцию распределения , мы задаём закон распределения вероятностей случайного вектора .

Функция регрессии – функция, описывающая зависимость значений условных математических ожиданий одной из компонент двумерной случайной величины от другой компоненты. Функция - функция регрессии компоненты на изменение компоненты . Функция - функция регрессии компоненты на изменение компоненты .

Х

Характеристическая функция – комплексно-значная функция действительного аргумента, являющаяся математическим ожиданием функции случайной величины , где , то есть: .

Ч

Частная функция распределения – функция распределения любой k-той компоненты вектора . Определение частной функции распределения основано на свойстве согласованности функции распределения многомерной случайной величины, например, если n=2, то и .

Частные распределения компонент случайного вектора - распределения вероятностей компонент вектора, являющихся скалярными случайными величинами. Частное распределение каждой компоненты получается как проекция вероятностной функции вектора на соответствующую координатную ось. Если и P вероятностная функция вектора, то частное распределение компоненты определяется равенством: , где B( ). Аналогично, частное распределение компоненты определяется равенством: , где B( ).

Ц

Центральная предельная теорема (ЦПТ) – совокупность теорем, в которых на последовательность случайных величин , налагаются условия, при которых их центрированная и нормированная сумма сходится по распределению к нормальному закону N(0;1).

Э

Эффективная оценка – точечная оценка числовой характеристики, имеющая наименьшую дисперсию.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]