Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Гетероциклы.Лекция.doc
Скачиваний:
24
Добавлен:
18.09.2019
Размер:
980.48 Кб
Скачать

Химические свойства

Рассмотренные выше особенности электронного строения пиридина дают основание сделать следующие заключения о возможном его химическом поведении:

1. Наличие свободной электронной пары на атоме азота обусловливает основные свойства (хотя и относительно слабые);

2. Как соединение, обладающее по сравнению с бензолом меньшей ароматичностью, пиридин должен легче вступать в реакции присоединения, приводящие к разрушению ароматического секстета, например, в реакции гидрирования;

3. Значительный положительный заряд в ядре пиридина делает его инертным ко многим реакциям электрофильного замещения, которые могут быть осуществлены только в жестких условиях и будут ориентироваться в β-поло­жение (Сβ-ориентация);

4. Наоборот, реакции нуклеофильного замещения должны протекать облегченно и ориентироваться в α- и γ-положения (Сα- и Сγ-ориентации).

Основные свойства. Наличие неподеленной пары электронов на атоме азота в пиридине обусловливает его основные свойства (Косн.= 2,3 . 10–9), которые, однако, значительно слабее выражены, по сравнению с аминами жирного ряда. Это ослабление объясняется тем, что электронная пара на атоме азота в пиридине находится на плоскостно-тригональной орбитали, имеющей больший s-характер по сравнению с аминами жирного ряда, основность которых обусловлена наличием неподеленной электронной пары на тетраэдрической sp3-орбитали. Как слабое основание пиридин реагирует только с сильными минеральными или органическими кислотами с образованием солей пиридиния:

пиридиний бромид

При введении в положения 2, 4, и 6 электроноакцепторных заместителей основность пиридина снижается, а электронодонорных заместителей – повышается.

Пиридин также довольно легко вступает в реакции N-алкилирования и комплексообразования:

бромистый метилпиридиний

Путем нагревания полученных солей могут быть образованы соответствующие α- или γ-алкильные производные пиридина:

α-пиколин γ-пиколин

Кислоты Льюиса с пиридином легко образуют комплексные соединения. Так, пиридин с серным ангидридом дает пиридинсульфотриоксид, широко применяемый при сульфировании ацидофобных пятичленных гетероциклов с одним гетероатомом (например, фурана и пиррола):

пиридинсульфотриоксид

Реакции гидрирования. При действии на пиридин гидридов металлов в присутствии хлорида алюминия (III) образуется пиперидин (гексагидропиридин):

пиперидин

(гексагидропиридин)

Реакции электрофильного замещения.

1. В результате смещения электронной плотности в направлении гетероатома (имеют место −M и –I-эффекты) углероды кольца пиридина значительно дезактивированы к электрофильной атаке, и особенно по 2, 4 и 6-поло­жениям;

2. Первичным актом взаимодействия пиридина с электрофилом (например, с протоном) является образование четвертичной соли пиридиния, а возникший в этом случае положительный заряд на атоме азота будет в еще большей степени затруднять электрофильную атаку по α- и γ-положениям:

катион пиридиния

В связи с этим реакции электрофильного замещения могут быть осуществлены только в жестких условиях и заканчиваются они образованием β-замещенных продуктов с довольно низкими выходами. Например, нитрование пиридина идет при взаимодействии со смесью нитратов с олеумом при 300 °С и завершается образованием β-нитропиридина с выходом менее 5 %. Сульфирование пиридина можно провести только при использовании олеума и катализатора. Ацилирование и алкилирование по Фриделю − Крафтсу для пиридина практически неосуществимо.

Электронодонорные заместители, находящиеся в кольце пиридина, значительно облегчают протекание электрофильного замещения, поскольку «гасят» положительный заряд на атакуемом атоме углерода кольца. Здесь эффект заместителя проявляется совершенно так же, как в бензольном ряду.

.

Таким образом, пиридин в реакциях электрофильного замещения во многом напоминает производные бензола, содержащие в кольце сильные электроноакцепторные заместители, например нитробензол.

Реакции нуклеофильного замещения. Для пиридина, так же как и для производных бензола, содержащих электроноакцепторные заместители, SN-реак­ции идут довольно легко с образованием α- или γ-замещенных производных. При этом часто процесс не останавливается на стадии образования монозамещенного продукта. Наибольшее значение для пиридина имеют реакции аминирования и гидроксилирования. Аминирование осуществляется при взаимодействии пиридина с амидом натрия при температуре 100 °С (реакция А. Е. Чичибабина), а гидроксилирование – при действии на пиридин расплава щелочей при температуре 300 °С. В растворах α-гидроксипиридин находится в равновесии со своей таутомерной кето-формой – α-пиридоном:

2-аминопиридин

α-гидроксипирдин α-пиридон

Реакции окисления. Так же как и кольцо бензола, цикл пиридина довольно устойчив к действию окислителей. При действии пероксидов и надкислот окисление происходит только по атому азота с образованием N-оксида пиридина:

N-оксид пиридина

Алкильные же производные, так же как и в бензоле, легко окисляются с образованием соответствующих карбоновых кислот:

β-пиколин никотиновая кислота