Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Материаловедение(электро) ч3.doc
Скачиваний:
17
Добавлен:
18.09.2019
Размер:
536.58 Кб
Скачать

3.1. Строение электротехнических материалов

В зависимости от соотношения энергии теплового движения частиц (атомов, ионов, молекул), образующих данное вещество, и энергии их взаимодействия все материалы при нормальных условиях могут находиться в газообразном, жидком или твердом состоянии. Переход вещества из газообразного состояния в жидкое и далее в твердое сопровождается ростом упорядоченности в расположении частиц в пространстве.

Газообразное состояние – когда энергия теплового движения частиц превышает энергию их взаимодействия. Молекулы газа находятся в постоянном хаотическом движении. Лишь незначительная часть молекул ионизирует с образованием ионов и электронов.

В жидком состоянии энергия теплового движения частиц сравнима с энергией их взаимодействия. В диэлектриках этими частицами являются молекулы, которые образуют неустойчивые комплексы, непрерывно распадающиеся и вновь образующиеся. В жидкостях имеет место ближний порядок. Недиссоциированные жидкости являются диэлектриками. Расплавы и водные растворы электролитов – проводники второго рода.

В твердом состоянии энергия взаимодействия частиц, образующих вещество, значительно превышает энергию их теплового движения. Такими частицами являются атомы, ионы или молекулы, которые расположены либо в геометрическом правильном порядке, образуя кристаллическое тело, либо в хаотическом, в беспорядке, образуя аморфное тело.

Строение аморфных твердых тел сходно со строением жидкостей, но в отличие от жидкостей для аморфных твердых тел характерна высокая вязкость.

В кристаллическом теле частицы расположены на определенном расстоянии друг от друга в определенном порядке, образуя кристалл. Кристалл сформирован из пространственной кристаллической решетки, которая состоит из многократно повторяющихся элементарных кристаллических ячеек. Вершины ячейки называются узлами, а расстояние между двумя соседними узлами – периодом или параметром решетки. Все свойства кристаллических тел определяются типом и параметром кристаллической решетки.

В зависимости от того, какие частицы (атомы, ионы или молекулы) находятся в узлах решетки, различают типы кристаллических структур: атомные, металлические, ионные и молекулярные. Характерная особенность кристаллических тел – анизотропия их свойств, которая проявляется только у монокристаллов.

Монокристалл – это огромное число одинаково ориентированных элементарных ячеек, т. е. это большой одиночный кристалл. Однако в основном кристаллические вещества являются поликристаллическими и состоят из множества сросшихся мелких кристаллов, не имеющих одинаковой ориентации. Кристаллы неправильной геометрической формы называют зернами или кристаллитами, они малы и в металлах их можно увидеть только при значительном увеличении.

Некоторые вещества находятся в аморфно-кристаллическом состоянии, в них существуют две фазы: аморфная и кристаллическая. Такое строение имеют многие полимеры, ситаллы (стекла специального состава) и др.

3.2. Диэлектрические материалы

Все диэлектрические материалы имеют молекулярное или ионное строение. Молекулы, в свою очередь, образованы из атомов, атомы и ионы – из электронов и положительно заряженных ядер. При этом суммарный заряд всех отрицательно и положительно заряженных частиц, образующих диэлектрик (Д) как молекулярного так и ионного строения, равен нулю.

Идеальный Д состоит только из связанных между собой заряженных частиц (свободных зарядов в нем нет), поэтому электропроводность в идеальном Д отсутствует. Под действием приложенного электрического поля все связанные заряженные частицы Д упорядоченно смещаются из своих равновесных состояний только на ограниченные расстояния, а диполи ориентируются по полю; в результате Д поляризуется. Поляризация – такое явление, когда под воздействием внешнего электрического поля происходит ограниченное смещение связанных заряженных частиц и некоторое упорядочение в расположении дипольных молекул. В результате этого в Д образуется электрический дипольный момент. Упорядоченное смещение заряженных частиц и ориентация диполей приводят к образованию в материале токов смещения.

В реальных диэлектриках в результате дефектов строения и присутствия ионной примеси кроме связанных заряженных частиц имеются еще и свободные заряженные частицы (свободные заряды), которые не связаны с определенными молекулами или атомами и поэтому не имеют постоянных равновесных положений. Под действием приложенного электрического поля они направленно перемещаются в диэлектрике на относительно большие расстояния. Подходя к электродам, свободные частицы разряжаются на них, образуя электрический ток. Поскольку количество этих зарядов в Д очень мало, их электропроводность низка. Способность диэлектриков поляризоваться под действием приложенного электрического поля является их фундаментальным свойством.

В поляризованном диэлектрике связанные разноименно заряженные частицы после смещения остаются в поле взаимодействия друг с другом. Возникающие при этом заряды – это заряды самого диэлектрика, они его часть.

Часть энергии приложенного электрического поля, которая рассеивается в диэлектрике за единицу времени, называют диэлектрическими потерями; эта энергия переходит в тепло и Д нагревается. При недопустимо высоких диэлектрических потерях электроизоляционная конструкция может нагреться до температуры теплового разрушения, т. е. наступит электротепловой пробой.

Диэлектрики образуют самую многочисленную группу электротехнических материалов, они могут быть газообразными, жидкими или твердыми, кристаллическими или аморфно-кристаллическими, органическими или неорганическими, пассивными или активными. Все они не пропускают электрический ток (имеют высокое сопротивление) и поляризуются в электрическом поле.