Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1 часть ОТ.doc
Скачиваний:
31
Добавлен:
01.09.2019
Размер:
1.46 Mб
Скачать

Светильники

Арматура с лампой называется светильником.

По распределению света светиль­ники подразделяются на светильники прямого, рассеянного или отраженно­го света. Светильники прямого света направляют более 80% светового пото­ка в нижнюю полусферу за счет внут­ренней отражающей эмалевой или полированной поверхности («Глубоко-излучатель», «Универсаль», «Альфа» и др.). Светильники рассеянного света излучают световой поток в обе полу­сферы («Молочный шар», «Люцетта»).

Светильники отраженного света более 80% светового потока направляют вверх на потолок, а отражаемый от него свет вниз в рабочую зону. Несмотря на их гигиенические преимущества (равномерность, отсут­ствие блескости и др.), в производственных условиях они применяют­ся редко, так как для них требуется высокий коэффициент отражения потолка, что не всегда имеет место в условиях производства.

Электромагнитные поля и излучения

Электромагнитное поле - область распространения электро­магнитных волн. Э/магнитная волна распространяется в воздухе со скоро­стью света 300 000 км/с.

К источникам ЭМП на производстве относятся:

- изделия, специально созданные для излучения электромаг­нитной энергии: радио- и телевизионные вещательные станции, ра­диолокационные установки, физиотерапевтические аппараты, систе­мы радиосвязи, технологические установки в промышленности;

- устройства, не предназначенные для излучения электромаг­нитной энергии в пространство, но в которых при работе протекает электрический ток: системы передачи и распределения электроэнер­гии (линии электропередачи, трансформаторные и распределитель­ные подстанции) и приборы, потребляющие электроэнергию (электро­двигатели, электроплиты, холодильники, телевизоры и т.п.).

Электростатические поля создаются в энергетических установ­ках и при электротехнических процессах. В зависимости от источни­ков образования они могут существовать в виде собственно электро­статического поля (поля неподвижных зарядов) или стационарного электрического поля (электрическое поле постоянного тока).

В промышленности ЭСП широко используются для электрогазо­очистки, электростатической сепарации руд и материалов, электро­статического нанесения лакокрасочных и полимерных материалов.

Статическое электричество образуется при изготовлении, транспортировке и хранении диэлектрических материалов, в помеще­ниях вычислительных центров, на участках множительной техники. Электростатические заряды и создаваемые ими электростатические поля могут возникать при движении диэлектрических жидкостей и некоторых сыпучих материалов по трубопроводам.

Магнитные поля создаются электромагнитами, соленоидами, ус­тановками конденсаторного типа, литыми и металлокерамическими магнитами и другими устройствами.

Воздействие неионизирующих излучений на человека.

Электромагнитные поля биологически активны - живые суще­ства реагируют на их действие. У человека нет специального органа чувств для определения ЭМП (за исключением оптического диапазона). Наиболее чувствительны к электромагнитным полям центральная нервная система, сердечно-сосудистая, гормональная и репродуктив­ная системы.

Длительное воздействие на человека электромагнитных полей промышленной частоты (50 Гц) приводит к расстройствам, которые субъективно выражаются жалобами на головную боль в височной и затылочной области, вялость, расстройство сна, снижение памяти, по­вышенную раздражительность, апатию, боли в сердце, нарушение ритма сердечных сокращений. Могут наблюдаться функциональные нарушения в центральной нервной системе, а также изменения в составе крови.

Воздействие электростатического поля на человека связано с протеканием через него слабого тока, при этом электротравм никогда не наблюдается. Возможна механическая травма от удара о располо­женные рядом элементы конструкций, падение с высоты вследст­вие рефлекторной реакции на протекающий ток. К ЭСП наиболее чувствительны центральная нервная система, сердечно-сосудистая система. Люди, работающие в зоне действия ЭСП, жалуются на раз­дражительность, головную боль, нарушение сна.

При воздействии магнитных полей могут наблюдаться нару­шения функций нервной, сердечно-сосудистой и дыхательной систем, пищеварительного тракта, изменения в составе крови. При локаль­ном действии магнитных полей (прежде всего на руки) появляется ощущение зуда, бледность и синюшность кожных покровов, отечность и уплотнение, а иногда ороговение кожи.

Инфракрасное (тепловое) излучение, поглощаясь тканями, вы­зывает тепловой эффект. Наиболее поражаемые ИК-излучением - кожный покров и органы зрения (возможны ожоги, резкое расшире­ние капилляров, усиление пигментации кожи). При хроническом об­лучении появляется стойкое изменение пигментации, красный цвет лица, например у стеклодувов, сталеваров. Повышение температуры тела ухудшает самочувствие, снижает работоспособность человека.

Ультрафиолетовое излучение большого уровня может вызвать ожоги глаз вплоть до временной или полной потери зрения, острое вос­паление кожи с покраснением, иногда отеком и образование пузырей, при этом возможно повышение температуры, появление озноба, голов­ная боль. Острые поражения глаз называются электроофтальмией. УФИ умеренного уровня вызывает изменение пигментации кожи (за­гар), хронический конъюнктивит, воспаление век, помутнение хру­сталика. Длительное воздействие излучения приводит к старению кожи, развитию рака кожи. УФИ небольших уровней полезно и даже необходимо для человека. Но в производственных условиях УФИ, как правило, является вредным фактором.

Воздействие лазерного излучения на человека зависит от ин­тенсивности излучения (энергии лазерного луча), длины волны (ин­фракрасного, видимого или ультрафиолетового диапазона), характера излучения (непрерывное или импульсное), времени воздействия. Лазер­ное излучение действует избирательно на различные органы, выделя­ют локальное и общее повреждение организма. При облучении глаз легко повреждаются роговица и хрусталик, наиболее опасен видимый диапазон лазерного излучения, при котором поражается сетчатка глаза. На рис. 8.15 представлены факторы, определяющие биологиче­ское действие лазерного излучения. ЛИ наносит повреждения кожи различных степеней - от по­краснения до обугливания и образования глубоких дефектов кожи, особенно на пигментированных участках (родимые пятна, места с сильным загаром). ЛИ, особенно инфракрасного диапазона, способно проникать через ткани на значительную глубину, поражая внутренние органы. Длительное воздействие ЛИ даже небольшой интенсивности может привести к различным функциональным нарушениям нервной, сердечно-сосудистой систем, желез внутренней секреции, артериально­го давления, повышению утомляемости, снижению работоспособности.

Общими методами защиты от электромагнитных полей и излу­чений являются:

- уменьшение мощности генерирования поля и излучения не­посредственно в его источнике, в частности за счет применения по­глотителей электромагнитной энергии;

- увеличение расстояния от источника излучения;

- уменьшение времени пребывания в поле и под воздействием излучения;

- экранирование излучения;

- применение СИЗ.

Методы и средства защиты от лазерного излучения

Наиболее эффективным методом защиты от ЛИ является экра­нирование. На открытых площадках обозначаются опасные зоны и устанавливаются экраны, предотвращающие распространение излу­чений за пределы зон.

Непрозрачные экраны изготовляются из металлических листов (стали, дюралюминия и др.), гетинакса, пластика, текстолита, пластмасс.

Прозрачные экраны из специальных стекол светофильтров или неорганического стекла со спектральной характеристикой, соответст­вующей длине волны излучения лазера.

При эксплуатации импульс­ных лазеров с высокой энергией излучения должно применяться дис­танционное управление.

Средства индивидуальной защиты применяются при недоста­точности средств коллективной защиты. К СИЗ относятся технологи­ческие халаты, перчатки (для защиты кожных покровов), специаль­ные очки, маски, щитки (для защиты глаз). Халаты изготовляют из хлопчатобумажной ткани белого, светло-зеленого или голубого цвета. Очки снабжены оранжевыми, сине-зелеными и бесцветными стекла­ми специальных марок, обеспечивающими защиту от лазерного излу­чения определенных диапазонов длин волн.

Защита от инфракрасного (теплового) излучения

Для защиты от теплового излучения применяются средства кол­лективной и индивидуальной защиты.

Основными методами коллективной защиты являются: тепло­изоляция рабочих поверхностей источников излучения теплоты, эк­ранирование источников или рабочих мест, воздушное душирование рабочих мест, мелкодисперсное распыление воды с созданием водя­ных завес, общеобменная вентиляция, кондиционирование.

Защита от ультрафиолетового излучения

Для защиты от ультрафиолетового излучения применяют спе­циальные светофильтры, не пропускающие ЭМИ ультрафиолетового диапазона. Светофильтрами снабжаются смотровые окна установок, внутри которых возникает излучение. Применяются также противосолнечные экраны и навесы.

В качестве средств индивидуальной защиты применяются све­тозащитные очки и щитки, для защиты кожи - защитная одежда, рукавицы, специальные кремы. Наиболее характерно применение таких СИЗ при проведении газо- и электросварочных работ.

ИОНИЗИРУЮЩИЕ ИЗЛУЧЕНИЯ

Ионизирующим называется излучение, которое прямо или кос­венно вызывает ионизацию среды. Ионизирующее излучение, как и электромагнитное, не воспринимается органами чувств человека, по­этому оно особенно опасно. Естественными источниками ионизирующих излучений явля­ются высокоэнергетические космические частицы, а также рассеянные в земной коре долгоживущие радиоизотопы - калий-40, уран-238, уран-235, торий-232 и др., являющиеся источниками альфа- и бета-частиц, гамма-квантов и т.д. Искусственными источниками ионизирующих излучений яв­ляются радиоактивные выпадения от ядерных взрывов, выбросы атомных электростанций, заводов по переработке ядерного топлива, выбросы тепловыми электростанциями золы, содержащей естествен­ные радиоактивные элементы — торий и радий.

Различные приборы: аппараты для лучевой терапии; радиацион­ные дефектоскопы; радиоизотопные термоэлектрические генераторы; толщиномеры, плотномеры, влагомеры, высотомеры; измерители и сиг­нализаторы уровня жидкости; нейтрализаторы статического электри­чества; электрокардиостимуляторы; пожарные извещатели и др. также являются искусственными источниками ионизирующих излучений.

Незначительному облучению люди подвергаются при изотопной и рентгеновской диагностике, радиационной терапии, при просмотре телепередач и работе на дисплеях.

Особое место среди искусственных источников ионизирующих излучений занимают ядерные энергетические установки. Их исполь­зуют на атомных электростанциях, ледоколах, подводных лодках.

В настоящее время существует серьезная проблема утилизации радиоактивных отходов, которые являются весьма значимыми источ­никами радиоактивного загрязнения биосферы.

При нормальной работе АЭС выбросы в окружающую среду малы и оказывают небольшое воздействие на проживающее поблизо­сти население.

Иная ситуация складывается при отклонении от нормального режима работы, а особенно при авариях. Так, произошедшая в 1986 г. авария (которую можно отнести к катастрофам глобального масшта­ба - самая крупная авария - за всю историю развития ядерной энергетики) на Чернобыльской АЭС привела к вы­бросу в окружающую среду лишь 5% всего топлива. Этот выброс при­вел к облучению большого количества людей, большому количеству смертей, загрязнению очень больших территорий, необходимости мас­сового переселения людей.

Виды ионизирующих излучений и их характеристики

Альфа-излучение представляет собой поток ядер гелия (состоя­щих из двух положительных протонов и двух нейтральных нейтро­нов), испускаемых веществом при радиоактивном распаде или при ядерных реакциях. Их энергия не превышает нескольких МэВ.

Альфа-частицы обладают сравнительно большой массой, имеют низкую проникающую способность и высокую удельную ионизацию.

Бета-излучение поток отрицательно заряженных электро­нов или положительно заряженных позитронов, возникающих при радиоактивном распаде. Энергия бета-частиц не превышает несколь­ких МэВ.

Ионизирующая способность бета-частиц ниже, а проникающая способность выше, чем альфа-частиц, так как они обладают значи­тельно меньшей массой и при одинаковой с альфа-частицами энергии имеют меньший заряд.

Нейтроны (поток которых образует нейтронное излучение) пре­образуют свою энергию в упругих и неупругих взаимодействиях с яд­рами атомов; при неупругих взаимодействиях возникает вторичное излучение, которое может состоять как из заряженных частиц.

Воздействие ионизирующих излучений на организм человека

В организме человека радиация вызывает цепочку обратимых и необратимых изменений. Под воздействием радиации нарушаются обменные процессы, замедляется и прекращается рост тканей, возникают новые химические соединения, не свойственные организму (токсины). Нарушаются функ­ции кроветворных органов (красного костного мозга), увеличивается проницаемость и хрупкость сосудов, происходит расстройство желу­дочно-кишечного тракта, ослабевает иммунная система человека, про­исходит его истощение, перерождение нормальных клеток в злокаче­ственные (раковые) и др.

Ионизирующее излучение вызывает поломку хромосом, после чего происходит соединение разорванных концов в новые сочетания. Это приводит к изменению генного аппарата человека. Стойкие изме­нения хромосом приводят к мутациям, которые отрицательно влияют на потомство.

Гигиеническое нормирование ионизирующего излучения осуще­ствляется по ГН 2.6.1.8-127-2000 «Нормы радиационной безопасности» (НРБ-2000).

Защита от ионизирующих излучений (радиации)

Для защиты от ионизирующих излучений применяют следующие

методы и средства:

- снижение активности (количества) радиоизотопа, с которым работает человек;

- увеличение расстояния от источника излучения;

- экранирование излучения с помощью экранов и биологиче­ских защит;

- применение средств индивидуальной защиты.

Средства индивидуальной защиты. Для защиты человека от внут­реннего облучения при попадании радиоизотопов внутрь организма с вдыхаемым воздухом применяют респираторы (для защиты от радио­активной пыли), противогазы (для защиты от радиоактивных газов).

При работе с радиоактивными изотопами применяют халаты, комбинезоны, полукомбинезоны из неокрашенной хлопчатобумажной ткани, а также хлопчатобумажные шапочки. При опасности значи­тельного загрязнения помещения радиоактивными изотопами поверх хлопчатобумажной одежды надевают пленочную (нарукавники, брю­ки, фартук, халат, костюм), покрывающую все тело или места воз­можного наибольшего загрязнения. В качестве материалов для пле­ночной одежды применяют пластики, резину и другие материалы, которые легко очищаются от радиоактивных загрязнений.

Для защиты глаз применяют очки закрытого типа со стеклами, содержащими фосфат вольфрама или свинец. При работе с альфа- и бета-препаратами для защиты лица и глаз используют защитные щитки из оргстекла.

На ноги надевают пленочные туфли или бахилы и чехлы, сни­маемые при выходе из загрязненной зоны.

Приборы для регистрации ионизи­рующих излучений:

Дозиметры - приборы для измерения дозы ионизирующего излучения (экспозиционной, поглощенной, эквивалентной), а также коэффициента качества. В практической деятельности для измере­ния доз наибольшее распространение получили индивидуальные дозиметры.

Радиометры - приборы, предназначенные для измерения плот­ности потока ионизирующих излучений, пересчитываемой на величи­ну, характеризующую источники излучений.

Универсальные приборы - устройства, совмещающие функции дозиметра и радиометра, радиометра и спектрометра и пр. Эти при­боры широко применяются службами дозиметрии и радиационной безопасности, так как они могут совмещать функции нескольких при­боров, измеряющих различные виды ионизирующего излучения.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]