Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УМК по ОСЕ.doc
Скачиваний:
129
Добавлен:
31.08.2019
Размер:
5.72 Mб
Скачать

Лекция 6. Элементарные частицы и физический эксперимент

Цель: формирование обобщенных представлений о явлениях в микромире.

Вопросы:

1. Современные ускорители.

2. Рождение и аннигиляция элементарных частиц.

3. Виды взаимодействий фундаментальных частиц.

4. Теория кварков.

5. Виртуальные частицы: квантовый вакуум.

Блок базовых понятий: ускорители частиц, аннигиляция частиц, взаимодействие частиц, кварк, квантовый вакуум, виртуальные частицы

1. Современные ускорители

Ускори́тель заря́женных части́ц – класс устройств для получения заряженных частиц (элементарных частиц, ионов) высоких энергий. Современные ускорители, подчас, являются огромными дорогостоящими комплексами, которые не может позволить себе даже крупное государство. К примеру, Большой адронный коллайдер в ЦЕРНе, представляет собой кольцо периметром 27 километров, потребляющее 12000 МВт,а в Дубне (Россия) строится адронный коллайдер порядка 50 километров. В основе работы ускорителя заложено взаимодействие заряженных частиц с электрическим и магнитным полями. Электрическое поле способно напрямую совершать работу над частицей, то есть увеличивать ее энергию. Магнитное же поле, создавая силу Лоренца, лишь отклоняет частицу, не изменяя ее энергии, и задает орбиту, по которой движутся частицы.

Ускорители можно принципиально разделить на две большие группы. Это линейные ускорители, где пучок частиц однократно проходит ускоряющие промежутки, и циклические ускорители, в которых пучки движутся по замкнутым кривым типа окружностей, проходя ускоряющие промежутки по многу раз. Можно также классифицировать ускорители по назначению: коллайдеры, источники нейтронов, бустеры, источники синхротронного излучения, установки для терапии рака, промышленные ускорители. Идеологически наиболее простой, линейный ускоритель. Частицы ускоряются постоянным электрическим полем и движутся прямолинейно по вакуумной камере, вдоль которой расположены ускоряющие электроды.

Линейные ускорители электронов небольших энергий часто используются, как часть самых разных электровакуумных приборов (электронно-лучевая трубка, кинескоп, рентгеновская трубка и др.).

Циклотрон – это ускоритель, в котором элементарные частицы движутся по замкнутым траекториям.

Устройство циклотрона: 1 — место поступления частиц, 2 — траектория их движения, 3 — электроды, 4 — источник переменного напряжения. Магнитное поле направлено перпендикулярно плоскости рисунка.

Идея циклотрона проста. Между двумя полукруглыми полыми электродами, т.н. дуантами, приложено переменное электрическое напряжение. Дуанты помещены между полюсами электромагнита, создающего постоянное магнитное поле. Частица, вращаясь по окружности в магнитном поле, ускоряется на каждом обороте электрическим полем в щели между дуантами. Для этого необходимо, чтобы частота изменения полярности напряжения на дуантах была равна частоте обращения частицы. Иными словами, циклотрон является резонансным ускорителем. Понятно, что с увеличением энергии, на каждом обороте, радиус траектории частицы будет увеличиваться, пока она не выйдет за пределы дуантов. Циклотрон — первый из циклических ускорителей. Впервые был разработан и построен в 1931 году Лоуренсом, за что ему была присуждена Нобелевская премия в 1939 году. До сих пор циклотроны применяются для ускорения тяжелых частиц до относительно небольших энергий, до 50МэВ/нуклон.

Бетатрон или индукционный ускоритель – циклический ускоритель, в котором ускорение частиц осуществляется вихревым электрическим полем, индуцируемым изменением магнитного потока, охватываемого орбитой пучка. Поскольку для создания вихревого электрического поля необходимо изменять магнитное поле сердечника, а магнитные поля в несверхпроводящих машинах обычно ограничены эффектами насыщения железа на уровне ~20кГс, возникает ограничение сверху на максимальную энергию бетатрона. Бетатроны используются преимущественно для ускорения электронов до энергий 10-100 МэВ (максимум достигнутой в бетатроне энергии 300 МэВ).

Синхрофазотрон – циклический ускоритель с постоянной длиной равновесной орбиты. Чтобы частицы в процессе ускорения оставались на той же орбите, изменяется как ведущее магнитное поле, так и частота ускоряющего электрического поля. Большинство современных циклических ускорителей являются сильнофокусирующими синхрофазотронами. Для ультрарелятивистских электронов в процессе ускорения частота обращения практически не меняется, и используются синхротроны.

Колла́йдер (англ. collider от англ. collide – сталкиваться) – ускоритель заряженных частиц на встречных пучках, предназначенный для изучения продуктов их соударений. Благодаря коллайдерам ученым удается придать элементарным частицам вещества высокую кинетическую энергию, а после их столкновений – наблюдать образование других частиц.

По виду коллайдеры подразделяются на кольцевые, например, Большой адронный коллайдер в научно-исследовательском центре Европейского совета ядерных исследований (фр. Conseil Européen pour la Recherche Nucléaire, CERN) и линейные.

Фундаментальные исследования ХХ века в ядерной физике привели к созданию сначала атомной и водородной бомб, а затем – атомных электростанций. А в скором будущем, как обещают ученые, человек обуздает и неисчерпаемый источник термоядерной энергии (по сообщениям новостных лент в 2005 г начали строить первый испытательный термоядерный реактор во Франции). Возможно, успехи физики микромира и понимание того, из чего состоит материя и почему она стабильна, откроют совсем новые технологические горизонты, позволив получать энергию прямо из массы, следуя знаменитой формуле Эйнштейна Е = мс2.

Расположенная недалеко от Женевы Европейская организация по ядерным исследованиям (ЦЕРН) – пост физики микромира. На протяжении 50 лет здесь раскрываются невероятные тайны мироздания и по крупицам добываются интереснейшие данные о том, как рождаются вселенные, куда миллиарды лет назад исчезла антиматерия и почему все имеет массу. Здесь же построен сверхмощный ускоритель – большой Адронный Коллайдер – LHC, запуск которого ожидается в 2009 году.

Большой Адронный Коллайдер (LHC) - крупнейшая в мире установка для ускорения, накопления и столкновения пучков частиц сверхвысоких энергий. Благодаря ускорителю физики смогут проникнуть так глубоко внутрь материи, как никогда ранее. Эксперименты планируется начать в 2009 году. На ускорителе будут сталкиваться пучки протонов с энергиями до 7 ТэВ и пучки ускоренных ядер с энергиями до 1150 ТэВ. Причем это будут не только самые энергичные, но и самые интенсивные пучки в мире. Длина вакуумного кольца, в котором будут ускоряться частицы, – 27 км. Чтобы удержать пучек частиц в кольце, необходимы сильные магнитные поля, которые можно получить только с использованием эффекта сверхпроводимости. LHC будет самой большой "сверхпроводящей" установкой в мире с удерживающим магнитным полем величиной 10 Тесла. Около 4000 т металла будет охлаждено до температуры всего на 2° выше абсолютного нуля. В результате ток в 1,8 миллиона ампер будет проходить по сверхпроводящим кабелям почти без потерь.

Идею организации в Европе объединенного института ядерных исследований впервые озвучил французский ученый Луи де Бройль в 1949 году на Европейской конференции по культуре, проходившей в Лозанне. Вот фрагмент его речи: «...Наше внимание сосредоточено на создании новой международной организации для проведения научно-исследовательских работ, выходящих за рамки национальных программ... Эта организация могла бы взять на себя решение таких задач, объем и сущность которых не под силу какому-либо одному национальному институту... Это начинание оправдает затраченные усилия... укрепит связи между учеными разных стран, расширит сотрудничество, упростит распространение результатов научных работ и информации в целом. Кроме того, создание научного центра явится символом объединения интеллектуальных сил Европы».

Спустя год на Генеральной конференции ЮНЕСКО Пьер Оже и Эдоардо Амальди при поддержке Изидора Раби убедили европейские государства приступить к работе. В результате Европейская организация по ядерным исследованиям (Conseil Еurорееп де lа Recherche Nucleaire) появилась на свет уже в 1952 году. Но официальной датой ее создания считается 29 сентября 1954 года, когда все 12 стран – участниц ратифицировали договор. Сегодня их количество возросло до 20. Есть страны, такие как Россия, Китай, США и Япония, которые не являются членами ЦЕРН, хотя научные институты и промышленность этих стран принимают активное участие в создании ускорителей и детекторов, а также в проведении экспериментов и анализе полученных данных.

Руководящий совет организации состоит из представителей стран – участниц, по два – от каждой: один представляет правительство, другой – научное сообщество. Таким образом, совет имеет возможность соотносить пожелания ученых с финансовыми возможностями государств.

ЦЕРН размещается по обе стороны французско – швейцарской границы у подножия горного массива Юра, геологические и сейсмические условия которого являются наиболее подходящими для постройки столь огромных и точных сооружений, как ускорители элементарных частиц. Кроме того, расположение международной организации на территории двух стран как нельзя более соответствует демократическому духу ЦЕРН: открытости, сотрудничеству и солидарности в распространении знаний. В отличие от многих подобных национальных и интернациональных организаций как в России, так и в других странах эту ядерную «лабораторию» можно посетить с экскурсией без бюрократической волокиты и особых разрешений.

Сотрудничество ЦЕРН с Россией началось в 1960-х годах, когда европейские физики приехали под Серпухов, в поселок Протвино, чтобы принять участие в исследованиях на самом мощном (76GeV) по тем временам ускорителе. Холодная война 1950-х годов не располагала к доверию на международной арене. Но ученые - не политики: взаимный интерес к физике и желание понять друг друга помогли найти общий язык, завязалось не только тесное сотрудничество, но и крепкая дружба между учеными и даже их семьями. А когда в 1974 году в ЦЕРН построили ускоритель SPS мощностью 400 GeV, российские физики из многих научно-исследовательских институтов приняли участие в 20 проводимых на нем экспериментах. Часть этой программы продолжается и сегодня. В целом же сотрудничество с Россией, длящееся уже почти 40 лет, особенно окрепло за последние годы, когда руководство ЦЕРН приняло решение о строительстве нового сверхмощного ускорителя LHC.  Предназначение ЦЕРН – чистая наука, исследование фундаментальных вопросов Природы. Что такое вещество? Откуда оно появилось? Как оно объединяется в сложные объекты, такие как звезды, планеты и живые существа? Еще одна важная задача ЦЕРН – развитие технологий будущего: от материаловедения и электроснабжения до информатики и глобальных распределенных вычислений.    

Сегодня микромир парадоксальным образом встретился с макромиром: свойства элементарных частиц стали определять судьбы Вселенной. Те эксперименты, которые планируются на Большом Адронном Коллайдере (LHC), должны вплотную приблизить нас к первым мгновениям жизни Вселенной. Ученые предполагают, что после Большого взрыва, породившего нашу Вселенную, стабильная материя, из которой все мы состоим, возникала не сразу, и некоторое время мир представлял собой некий конгломерат основных строительных кирпичиков – действительно элементарных частиц: электронов, мюонов, кварков, глюонов, нейтрино и гамма - квантов. В глубинах Вселенной астрономы с интересом ищут отголоски тех далеких времен. И вот совсем скоро, в 2007 году, ученые – физики планируют воспроизвести в ядерной лаборатории те далекие первозданные условия, когда еще не было протонов и нейтронов, а существовала сплошная кварк - глюонная плазма. Иными словами, исследователи надеются увидеть мир злементарных частиц в том виде, каковым он был всего через доли микросекунд после Большого взрыва.

Интерес теоретиков к ускорителю LHC крайне велик. Уже более 30 лет в научном мире выстраиваются теории, объясняющие наличие массы у элементарных частиц. Одна из них предполагает существование бозона Хиггса. Эту элементарную частицу называют еще божественной, поскольку, возможно, именно благодаря хиггсовским полям наш мир приобретает массу и способность двигаться по инерции в нужном направлении. Но экспериментально существование бозона пока подтвердить не удалось: все надежды - на ускоритель LHC.

Процессы, происходящие при столкновении элементарных частиц на ускорителях, поразительны: кинетическая энергия там преобразуется в массу! Разогнанные до предельных – почти световых – скоростей частицы, врезаясь друг в друга, рождают целый каскад новых частиц, в том числе и таких, которые имеют массу в тысячи раз больше, чем изначально сталкивающиеся. В нашем мире это можно было бы представить как появление десятков ядер для Царь-пушки при лобовом столкновении двух бильярдных шаров... Микромир устроен совершенно иначе. В нем энергия легко переходит в массу и, наоборот, – масса превращается в энергию. Именно за этими процессами наблюдают сегодня ученые-физики, сталкивая между собой электроны, позитроны, протоны, антипротоны и ядра тяжелых атомов. Сейчас трудно предугадать, во что воплотятся через 50 лет те открытия, которые произойдут в ближайшие десятилетия, но если открытий не делать, то не будет и воплощений.

Быстро привыкая к удобствам: плоским экранам, компактным СВЧ-печам, компьютерным навигаторам в автомобилях и так далее, мы часто даже не задумываемся над тем, что все это стало реальным благодаря физике. Точнее, благодаря открытию электрона – частицы, отвечающей за абсолютное большинство протекающих вокруг нас электрическик процессов. Это открытие полностью изменило нашу жизнь, и еще очень долго именно электромагнитные процессы будут определять наши успехи, достижения и неудачи в освоении окружающего мира. В целом же вся современная техника основана на достижениях, сделанных в областях физики и химии еще в первой половине ХХ века. Так, без разработки полупроводниковых приборов не было бы и современных компьютеров, и Всемирной сети Интернет.

Именно в тот период человечество шагнуло в эру освоения электричества как универсального источника энергии, как носителя и средства обработки информации. Что же касается ускорителей, то на первый взгляд эксперименты на них кажутся очень далекими от задач народного хозяйства. Но это далеко не так! Ускорители «притягивают» к себе самых умных и активных представителей человечества, а те, в свою очередь, выдают «на-гора» полезнейшие разработки, начиная от рентгеновского аппарата и кончая новой компьютерной системой GRID. Эта система в скором времени станет незаменимой при обработке огромного потока информации, которая начнется с запуском ускорителя LHC. В нашей жизни есть и другие ускорители, компактность которых не мешает им также «притягивать к себе». Это, конечно же, телевизоры. Совсем недавно каждый из них обязательно имел электронно-лучевую трубку (ЭЛТ) – простейший линейный ускоритель электронов, который, кстати, содержит практически все принципиальные узлы ускорителя. А именно – катод, испускающий заряженные частицы; электроды, модулирующие и ускоряющие частицы; систему фокусировки луча; магниты, отклоняющие поток частиц; вакуум, не препятствующий полету частиц, и люминофор, делающий видимым поток электронов (аналог системы датчиков, регистрирующих частицы).

На самом деле ускорителей вокруг нас гораздо больше – это все электровакуумные приборы, начиная от диодов и триодов и кончая магнетронами, работающими в СВЧ-печах и радиолокаторах. Стоит отметить, что и привычная флюорография родилась как побочный продукт изучения процесса ускорения и резкого торможения электронов в катодной трубке. Оказалось, что, резко тормозя, заряженные частицы излучают жесткое электромагнитное излучение – Х-лучи, как назвал их первооткрыватель В.К. Рентген в ноябре 1895 года.

Обыкновенный портативный дозиметр, позволяющий спокойно гyлять по загрязненной нашими общими усилиями Земле, – это тоже изделие ядерной физики, и входящий в его состав счетчик Гейгера-Мюллера в некотором смысле – тоже ускоритель электронов. Способность рентгеновских и гамма-лучей убивать все живое сегодня активно применяют для того, чтобы стерилизовать продукты и обеззараживать медицинские изделия. Такая холодная дезинфекция часто бывает гораздо эффективнее горячей и требует меньше времени и энергии.