Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПМиНТ_отчёт_по_лб.docx
Скачиваний:
3
Добавлен:
29.07.2019
Размер:
91.65 Кб
Скачать

Контроль вытравливаемого профиля края элемента.

Рассмотрим некоторые факторы, влияющие на профили краев элементов, и методы их контроля.

1. Механизмы анизотропии реактивного травления.

К огда травление осуществляется в ходе ионно-стимулируемых реакций, как правило, наблюдается анизотропия скорости травления. Это связано с тем, что ионы падают на пластину перпендикулярно ее поверхности. Следовательно, на поверхность дна вытравливаемого элемента падает значительно больший поток ионов высокой энергии, чем на боковые стенки (рис. 3).

Рис. 3. Иллюстрация анизотропии травления, достигаемой при облучении ионным пучком, направленным перпендикулярно поверхности пластины. (Боковые стенки вытравливаемых элементов не подвергаются облучению ионами высокой энергии.)

Если реакция травления ионно-возбуждаемая, то боковое травление отсутствует, но в условиях ионно-ускоряемых реакций происходит боковой подтрав под маску, причем величина подтрава определяется скоростью протекания реакции.

Для минимизации бокового травления в условиях ионно-ускоряемых реакций целесообразно вводить в рабочий газ добавки, обеспечивающие рекомбинацию активных компонентов. Функция таких добавок заключается либо в связывании активных веществ на поверхности с образованием летучих соединений, либо в предотвращении образования пассивирующей пленки. Таким образом, подбирая оптимальный состав рабочего газа, можно обеспечить такие условия протекания процесса, при которых скорость травления будет превышать скорость рекомбинации на облучаемых ионами поверхностях, и в то же время на боковых стенках, где облучение ионами минимально, будет реализовываться обратная ситуация (скорость рекомбинации выше скорости травления). Следовательно, степенью анизотропии травления можно управлять, регулируя состав рабочего газа.

2. Другие факторы, влияющие на профиль края элемента.

Образование граней, возникновение канавок и повторное осаждение - три явления, проистекающие из физического распыления, которые могут влиять на профиль края вытравливаемого элемента. Степень их проявления зависит от интенсивности распыления и ионного потока, поэтому часто их можно полностью подавить. Эти эффекты чаще проявляются при реактивном ионном травлении, нежели при плазменном травлении, вследствие более высокой энергии ионов.

Образование канавок происходит главным образом в результате падения мощного потока ионов на основание ступеньки вследствие их отражения от боковой стенки ступеньки. Скорость травления, обусловливаемая как физическим распылением, так и ионно-стимулируемыми реакциями, повышается в местах расположения канавок, так как эти участки подвергаются воздействию более мощных ионных потоков.

Распыленный материал, не вошедший в состав летучих соединений, конденсируется на любой близлежащей поверхности. Распыленный материал распределяется в пространстве приблизительно по косинусоидальному закону, и поэтому значительная его часть может повторно осаждаться на стенках близлежащих элементов маски, что приводит к изменению профиля краев и размеров вытравливаемых элементов. Повторное осаждение обычно не наблюдается при плазменном травлении, поскольку в этом процессе его можно избежать, подбирая состав рабочего газа, параметры плазмы и маскирующие материалы так, чтобы происходило образование только летучих продуктов реакций.

3. Определение момента окончания травления.

Если имеет место боковое травление, размеры элементов и профили их краев можно контролировать, уменьшая степень перетравливания. Перетравливание почти всегда необходимо для компенсации неоднородностей и для переноса рисунка на поверхности ступенчатого рельефа при. Используются различные методы установления момента окончания травления пленки:

  1. непосредственное визуальное наблюдение подвергаемой травлению пленки;

  2. регистрация оптического отражения от подвергаемого травлению слоя;

  3. регистрация изменения концентрации травящих компонентов в плазме методом эмиссионной спектроскопии;

  4. анализ продуктов реакции травления с помощью эмиссионной спектроскопии или масс-спектрометрии;

  5. измерение изменения полного электрического сопротивления плазмы.

Первые два метода не зависят от площади подложки, подвергаемой травлению, но не приспособлены для применения в условиях процесса неоднородного группового травления. С помощью методов 3, 4 и 5 контролируется травление очень малых участков поверхности подложки, размер которых определяется скоростью травления и чувствительностью детекторов. Для этих методов характерно усреднение неоднородностей. Кроме того, на точность третьего метода оказывает влияние загрузочный эффект.