Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры экология.docx
Скачиваний:
18
Добавлен:
28.07.2019
Размер:
575.8 Кб
Скачать
  • Рекуперация, вторичная переработка, хранение и использование твердых отходов. Оценка технологий

  • Миллионы тонн промышленных отходов образуются в результате жизнедеятельности крупнейших индустриальных центров России. К ним ежесуточно добавляются отходы коммунально-городского хозяйства, включая твердые бытовые отходы. Совокупный рост объемов ТПО и ТБО составляет примерно 5% в год. С другой стороны, при развитии мощностей по переработке отходов существенно возрастает потребность в площадках для новых установок. Уже в настоящее время проблема размещения стала основным сдерживающим моментом в развитии производств по переработке ТПБО. В большинстве стран Европы и Северной Америки управление потоками ТПБО включает ряд обязательных этапов. К их числу относятся: программы по снижению объемов образования ТПБО, широкое внедрение их вторичного использования, применение соответствующих фракций ТПБО в качестве сырья для основных производственных процессов, утилизация энергетического потенциала отходов, захоронение остатков ТПБО, не обладающих никакими полезными свойствами на экологически нейтральных полигонах.

  • Фактически формула обращения с ТПБО в развитых странах воплощает принцип устойчивого развития и может быть кратко представлена следующим перечнем операций:

  • редукция;

  • вторичное использование;

  • переработка;

  • извлечение энергии;

  • захоронение остатков.

  • Полнота осуществления данной формулы в различных странах определяется конкретными экологическими, сырьевыми, демографическими и другими условиями. В целом европейскими странами принята в настоящее время стратегия, в соответствии с которой возобновляемые источники энергии, к числу которых относятся ТПБО, должны составлять в их энергобалансе 10-15% к 2010 году.

  • В РФ создано московское государственное предприятие МГП «Промотходы». Основными направлениями деятельности МГП являются:

  • создание общегородской системы централизованного удаления и переработки всех видов отходов промышленных предприятий, а также экологически опасных отходов и вторичных материальных ресурсов от объемов коммунального и жилого секторов г. Москвы;

  • развитие системы экологического контроля, правового регулирования, нормативно-методического и информационного обеспечения обращения с отходами;

  • координация работ, направленных на сокращение промышленных отходов города и др.

  • В связи с разнообразием веществ и материалов, подпадающих под категорию ТПБО, и различными технологиями и переработки до настоящего времени не существует единого подхода к созданию типового перерабатывающего завода. Сейчас стратегии управления ТПБО осуществляются посредством химико-технологических систем удаления отходов, которые фактически являются инструментом их воплощения. Структура такой ХТС является прямым отражением экономической и экологической политики государства.

  • Так, во многих регионах РФ, странах СНГ, части Восточной Европы и в развивающихся странах реальные ХТС включают две основных системы - источник ТПБО и свалку. В большинстве экологически развитых стран ХТС удаления ТПБО включают спектр методов и производств, позволяющих осуществлять индивидуальную переработку и обезвреживание различных ингредиентов. Вместе с тем, все современные ХТС включают полигоны захоронения ТБО, куда поступают непрореагировшие остатки от переработки отходов.

  • Таким образом, при выборе методов и оборудования переработки твердых отходов существенную роль играют их состав, количество, цена и экологическая безопасность. В РФ вторичную переработку осуществляют по четырем основным вариантам: обезвреживание, извлечение полезных веществ, уничтожение и захоронение. Анализ соответствующих процессов позволил сформировать основное требование к их разработке: технологический процесс должен потреблять минимальное количество реагентов и энергозатрат, а продукт вторичной переработки должен обладать потребительской ценностью.

      • Обезвреживание твердых отходов

  • Для обезвреживания твердых отходов часто применяют метод их капсулирования, заключающийся в обволакивании токсичного отхода инертной пленкой, например, стеклообразной или полимерной. Используемый метод переплавки отходов заключается в выжигании вредных компонентов, формировании новой структуры вторичных материальных ресурсов и их потребительских свойств: размеров, цвета и т.п. Химические методы позволяют получать из отходов новые продукты: твердые органические отходы путем гидрирования превращают в жидкое и газообразное топливо. Использование цемента для фиксации отходов является в настоящее время наиболее распространенным методом. Технология применяется для отходов, содержащих воду, которая необходима для реакции цементирования. Недостаток метода - увеличение объема отходов и возможная деградация цемента при низких значениях рН. Применяется для неорганических отходов, особенно тяжелых металлов, а также радиоактивных веществ. Для фиксации с использованием органических полимерных материалов готовится смесь отходов с соответствующими смолами или мономерами, затем вводится катализатор, обеспечивающий полимеризацию и создание объема фиксированного материала. Обычно отходы не связываются химически с полимером. Происходит микрообвалакивание органической оболочкой. Для обработки отходов обычно используются формальдегидные, виниловые и полиэстеровые соединения. Такой монолит обладает сопротивлением на сжатие на уровне бетона. Недостаток метода - возможность появления ядовитых паров в процессе полимеризации.

      • Извлечение ценных компонентов из bmp

  • Для извлечения ценных компонентов из BMP используют методы экстрагирования и кристаллизации. Экстрагирование - извлечение из твердого вещества одного или нескольких компонентов с помощью растворителя. При этом извлекаемые компоненты переходят из твердой фазы в растворитель. Для последующего выделения целевого компонента из смеси с экстрагентом применяют выпаривание или ректификацию. Используются следующие основные типы экстракторов: смесительно-отстойные, колонные и центробежные. Кристаллизация - выделение твердой фазы в виде кристаллов из растворов или расплавов. Процесс характеризуется переходом вещества из жидкой фазы в твердую вследствие изменения его растворимости. Далее выделенный кристаллический продукт подлежит вторичному использованию, а фильтрат подвергается дальнейшей переработке.

  • Принцип действия установки по очистке грунта от нефти и нефтепродуктов основан на использовании интенсивной виброкавитационной экстракции загрязнений, содержащих нефть и нефтепродукты, с последующим разделением пульпы на чистый и извлеченную нефть. В качестве экстрагентов могут использоваться различные вещества, в частности, вода, нефть, углеводороды. При проведении работ на морском побережье - соленая морская вода.

  • В конструкции установки применяется специально разработанный экстрактор, обладающий высокой производительностью и эффективностью, а также оригинальный узел для последующего отделения грунта от нефти и нефтепродуктов.

  • Установка массой не более 2,5 т и производительностью 1 т загрязненного грунта в час имеет модульную конструкцию. Тип модулей и их количество определяются видом и степенью загрязненности грунта. Габаритные размеры модуля установки составляют: ширина -2 м, длина -2 м, высота - 3 м. Расход воды не превышает 200 кг на 1 тонну исходного грунта, затраты электроэнергии - 10 кВт в час.

  • Способ экстракции обеспечивает степень очистки грунта не менее 99% и высокую производительность процесса при компактности оборудования. Технология является безотходной и экологически чистой. Возможно создание передвижной очистной установки, что позволяет использовать ее при ликвидации последствий аварий, в частности на нефтепромыслах и нефтепроводах.

  • Существенным достоинством метода является то, что извлекаемые из грунта нефтепродукты можно применять повторно, например, в виде топлива. По сравнению с зарубежными технологиями данный метод обеспечивает снижение эксплуатационных затрат в 3-4 раза и капитальных - в 10 раз.

  • Схема кристаллизатора с принудительной циркуляцией суспензии приведена на рис. 3. Циркуляция создается мешалкой. Кристаллизатор с естественной циркуляцией раствора представлен на р и с. 4.

  • Дальнейшая переработка твердых отходов ведется в оборудовании для сушки жидких, пастообразных и сыпучих продуктов химической, пищевой, медицинской, микробиологической, стройматериалов, горнодобывающей и смежных с ними отраслей промышленности, а также для сушки осадков сточных вод и отходов различных производств.

  • АО «НИИХИММАШ» разработана сушильная техника широкого назначения, используемая, например, в качестве финишного оборудования процессов экстракции и кристаллизации. Ниже приведены схемы и технические показатели таких аппаратов.

  • Вальцевые сушилки типа «вн» предназначены для сушки суспензий и текучих паст.

  • Рабочей поверхностью является цилиндрический обогреваемый валец, установленный на двух опорах и снабженный регулируемым приводом для вращения. Исходный продукт наносится тонким слоем на рабочую поверхность и снимается специальным ножом в виде пленки или чешуек. Время сушки соответствует одному обороту вальца. Сушилки могут поставляться комплектно. Исполнение: одно- и двухвальцевые, открытые и герметизированные с чугунными или хромированными вальцами.

  • Диаметр вальца, м: от 1,2 до 2.

  • Производительность по испаренной влаге, кг/ч: от 25 до 2000. Обрабатываемые продукты: мездровый клей, гербициды, кормовые белки и т.д.

  • Распылительные сушилки типа «рц» и «рф» предназначены для сушки растворов и суспензий, обеспечивают интенсивное испарение влаги при кратковременном пребывании продукта в зоне теплового воздействия.

  • Представляют собой цилиндрическую камеру с коническим днищем. В верхней части установлены центробежный распылитель или форсунки и устройство для подвода теплоносителя. Получаемый продукт в виде порошка не требует дополнительного измельчения.

  • В качестве теплоносителя используется подогретый воздух или дымовые газы от сжигания мазута или природного газа.

  • Диаметр камеры, м: 1-2, 5-3, 2-4-5-6, 5-8-10-12,5.

  • Производительность по испаренной влаге, кг/ч: от 10 до 25000.

  • Обрабатываемые продукты: минеральные и органические соли, катализаторы, пигменты, красители, кормовые белки, ферменты, сточные воды и др.

  • Сушилки с вращающимся барабаном типа «бн» предназначены для сушки кусковых и зернистых материалов, в том числе комкующихся и рассыпающихся паст. Представляют собой горизонтальный цилиндр, установленный на опоры для его вращения и снабженный соответствующим приводом. Сушка осуществляется горячими газами.

  • Корпус барабана снабжен рядом насадок лопастного или цепного типа, обеспечивающих перемешивание и перемещение материала вдоль барабана при активном тепломассообмене.

  • Диаметр корпуса, м: 0,5-1-1,2-1,6-2,0-2,2-2,5-2,8-3,0-3,2-3,5.

  • Производительность по испаренной влаге, кг/ч: от 10 до 25000.

  • Обрабатываемые продукты: минеральные удобрения, угольные горнохимические и металлургические концентраты, каолин, мел, осадки бытовых и промышленных стоков, доменные шлаки, шламы, кокс, гипс, доломит, песок, щебень, полимеры в порошке и гранулах, лигнин, отходы животноводческого производства, деревопереработки и т.д.

  • Вальцеленточные сушилки типа «ел» и «лс» предназначены для сушки пастообразных продуктов. Представляют собой двухступенчатую установку, включающую вальцевую и ленточную части. Вальцевая часть выполнена в виде ребристого обогреваемого цилиндра, установленного на опоры с приводом для вращения. Продукт прижимным валиком впрессовывается в канавки, подсыхает в течение одного оборота и специальным ножом-гребенкой удаляется из канавок в виде кусочков или палочек, затем передается на бесконечную ленту. Ленточная часть представляет собой короб, где размещена бесконечная лента, калориферы для нагрева воздуха и циркуляционные вентиляторы.

  • Сушилки типа «вл» и «лс» самостоятельно используются для сыпучих, гранулированных и волокнистых материалов. Они позволяют строго регулировать время пребывания продукта в аппарате, влажность и температуру теплоносителя и материала, изменять поток теплоносителя: прямоток, противоток, смешанный и т.д.

  • Диаметр вальца, м: от 0,8 до 1.

  • Ширина ленты, м: 0,8-1,0-1,2-2-3.

  • Производительность по испаренной влаге, кг/ч: от 100 до 1500. Обрабатываемые продукты: пигменты и наполнители после фильтров, таблетированные материалы и т.д.

  • Сушилки роторные вакуумные типа «рв» предназначены для сушки жидких, пастообразных и сыпучих продуктов от органических растворителей или продуктов токсичных или пожаровзрывоопасных по своим химическим свойствам. Сушилки «рв» периодического действия представляют собой обогреваемую горизонтальную цилиндрическую или биконическую емкость, внутри которой помещен ротор, мешалка с лопастями различной конструкции, в том числе с ножевыми и размольными.

  • Сушилка работает под вакуумом до остаточного давления 50 мм рт.ст., что обеспечивает высокие скорости сушки при невысоких температурах нагрева. Это обстоятельство важно для сушки термонестойких материалов.

  • Достоинством сушилок «рв» является абсолютная герметичность, экологическая чистота, надежность в работе и обеспечение высокого качества готового продукта, минимальные энергозатраты.

  • Объем корпуса, м3: 0,3-1,6-4-6-10-30.

  • Производительность по испаренной влаге, кг/ч: от 5 до 500.

  • Обрабатываемые продукты: полиамид, поликарбонат, полиэтилен, по-ливинилхлорид, порошкообразный полисульфон, экстракт полифенола, кальнитиновая кислота, 2-хлорбензойная кислота, хлористый натрий, хлористый калий, метилглюкамин.

  • Сушильные аппараты взвешенного слоя с инертным носителем «пи» предназначены для сушки сыпучих зернистых и порошкообразных продуктов. Проектируются индивидуально во всех элементах соответственно гидродинамическим свойствам обрабатываемого материала.

  • Сушильные аппараты с псевдоожиженным слоем работают на принципе активного продува слоя материала в режиме, создающем расширение слоя материала. Подобный режим характеризуется высокой интенсивностью тепломассобмена и соответственно высокой производительностью.

  • Аппарат представляет собой вертикальную цилиндрической формы камеру. В нижней части камеры установлен газоподвод с газораспределительной решеткой, на которую засыпается слой инертных частиц.

  • Сушильные аппараты НИИХИММАШа с инертным носителем имеют универсальное применение и способны обрабатывать широкий диапазон продуктов жидкотекучих, пастообразных и сыпучих.

  • Готовый продукт получается в виде порошка или чешуек. Объем корпуса, м3: 1,5-6-20.

  • Производительность по испаренной влаге, кг/ч: от 50 до 1000. Обрабатываемые материалы: красители, ферменты, наполнители, органика и др.

  • Часто после сушки мелкодисперсных порошков в целях снижения пы-ления подвергают уплотнению на различных видах оборудования: барабанные, тарельчатые, роторные, брикетные и др. грануляторы. На р и с. 6. показан окомкователь порошков роторный ОПР, а ниже приведена его техническая характеристика. Применение окомковате-ля целесообразно перед выгрузкой высушенного порошка или пыли на ленту транспортера или в емкость. Обработанная пылевая масса приобретает вид гранул размером от 1 до 10 мм и влажностью 7-15%, которые не создают вторичного пыления при перевозке транспортными средствами общего назначения, при захоронении в отвалы или иной подготовке к утилизации. Окомкователь может применяться в черной и цветной металлургии, промышленности строительных материалов, машиностроении, химической промышленности.

  • Технические характеристики ОПР-200

  • Производительность по пыли м3/ч до 3

  • Температура пыли, °С до 100

  • Диаметр корпуса, мм 200

  • Число оборотов ротора, об/мин 350

  • Мощность привода, кВт 5,5

  • Габаритные размеры, LxBxH, мм 1300x744x554

      • Использование твердых отходов в качестве вторичных энергетических ресурсов и вторичных материальных ресурсов

  • Термические методы уничтожения твердых BMP позволяют использовать энергетический потенциал отходов, а в случае комплексной переработки извлекать из продуктов термообработки различные вещества, применяемые в основной или смежной отраслях. Процесс осуществляют в термических реакторах различных конструкций. Недостатком метода сжигания является образование сопутствующих топочных газов, подлежащих дополнительной очистке. В ряде случаев при термической переработке твердые отходы подвергают пиролизу - высокотемпературному превращению органических соединений, сопровождающееся их деструкцией и вторичными процессами. Образующиеся продукты используются как жидкое и газообразное топливо.

  • Переработка отходов с целью использования их энергетического потенциала без нанесения экологического ущерба окружающей среде представляет собой сложную энерготехнологическую проблему. К таким ВЭР относятся отходы химической и термохимической переработки углеродистого или углеводородного сырья, древесные отходы в лесной, деревообрабатывающей и целлюлозно-бумажной промышленности, отходы химических производств, представляющие собой смеси различных веществ и др., разделение которых экономически нецелесообразно.

  • Большого экономического эффекта достигают при применении систем, вырабатывающих или полностью обеспечивающих себя электроэнергией, кислородом, сжатым воздухом и теплом. Избытки электроэнергии, тепла и продуктов разделения воздуха используют для нужд коммунально-городского хозяйства. Схема такого энерготехнологического агрегата с применением печей Ванюкова предназначена для переработки твердых бытовых и промышленных отходов в барботируемом расплаве шлака.

  • Сущность технологического процесса переработки ТБО в печи Ванюкова заключается в высокотемпературном разложении компонентов рабочей массы в слое барботируемого шлакового расплава при температуре 1350-1400 °С и выдерживании их в течение 2-3 секунд, что обеспечивает полное разложение всех сложных органических соединений до простейших компонентов. Барботаж осуществляется за счет подачи через стационарные дутьевые устройства окислительного дутья.

  • ТБПО рассматривается как топливо с теплотворной способностью 1500-1800 ккал/кг при влажности 51,7%.

  • Плавка осуществляется автогенно без добавления топлива на дутье, обогащенном кислородом до 50-70%.

  • Комплекс по утилизации отходов позволяет перерабатывать шихту без предварительной сортировки и сушки со значительным колебанием по химическому и морфологическому составу за счет универсальности плавильного агрегата.

  • Экологическая безопасность достигается за счет отсутствия на выходе из печи высокотоксичных соединений и применения системы очистки газа, имеющей запас по пропускной способности и рассчитанной на улавливание практически всех возможных вредных соединений, встречающихся в бытовых и промышленных отходах и образующихся при их переработке.

  • ТБПО и флюсы поступают на завод автотранспортом. Материалы взвешиваются и проходят дозиметрический контроль.

  • В результате плавки образуются газы, содержащие продукты сгорания и разложения ТБО, и шлак, состоящий из силикатов и оксидов металлов. Возможно образование донной фазы, содержащей черные и цветные металлы.

  • Шлак после водной грануляции поступает на предприятия стройиндустрии или на строительство автодорог.

  • Донная фаза отливается в слитки и отправляется на переработку на предприятия черной и цветной металлургии.

  • Газы охлаждаются в газоохладителе с получением пара энергетических параметров, очищаются от пыли, возгонов, вредных примесей и сбрасываются в атмосферу через дымовую трубу.

  • Уловленная пыль, в зависимости от содержания в ней компонентов, отправляется или потребителю, или возвращается в оборот - на переработку с ТБПО.

  • Модули, кроме МПВ-30, полностью обеспечивают себя кислородом, сжатым воздухом, теплом и электроэнергией. Избыток электроэнергии, тепла и продуктов разделения воздуха используется для нужд населения и промышленных предприятий. Теплом отработанного пара турбогенератора в зависимости от мощности модуля можно отапливать от 3 до 30 гектаров тепличных хозяйств. Шлак используется для изготовления строительных изделий, а также для строительства дорог. Из отходящих газов печи Ванюкова, по желанию заказчика, возможно получение товарной угольной кислоты и метанола. Условная экономия земельных площадей при переработке 120 тыс. тонн ТБО в г. Рязани.

  • Научно-производственной фирмой «Термоэкология» и акционерным обществом «ВНИИЭТО» разработана технология и оборудование для термической переработки и утилизации твердых бытовых, промышленных и больнично-медицинских отходов. Используемая для переработки и утилизации отходов технология «ПИРОКСЭЛ» обеспечивает:

  • возможность безоотходной высокотемпературной переработки отходов, в том числе токсичных и с высокой влажностью;

  • очистку отходящих газов от пыли, соединений хлора и фтора, тяжелых металлов, окислов серы, азота и т.д.

  • полное уничтожение образующихся в процессе переработки диоксинов и фуранов;

  • производство полезного продукта в виде различных строительных материалов-теплоизоляционных, отделочных и конструкционных.

  • Метод высокотемпературной переработки отходов «ПИРОКСЭЛ» базируется на комбинировании процессов «сушка» - «пиролиз» - «сжигание» «электрошлаковая обработка» и предусматривает соответствующее аппаратурное оформление. Основное технологическое оборудование включает плавильную электропечь, пиролизную шахту, сушильный барабан с загрузочным устройством. Отходы подаются через загрузочное устройство и сушильный барабан в пиролизную шахту и плавильную электропечь, последовательно проходя через сушку, пиролиз, окисление углерода и обработку жидким шлаком. В результате происходит разложение отходов на шлак, металл, пиролизные и дымовые газы. Подогрев шлака осуществляется графитовыми электродами, которые подключены к источнику питания, при этом состав шлака регулируется добавкой флюсов. Слив шлаков и металла осуществляется периодически через дозирующие отверстия с последующей грануляцией.

  • В процессе переработки образуются газы двух типов: пиролизный и дымовой. Пиролизные газы проходят по замкнутому рециркуляционному тракту, включающему циклон, холодильник и дымосос. Пиролизные газы возвращаются в подсводовое пространство электропечи для сжигания.

  • Дымовые газы из подсводового пространства направляются в реактор, фильтр, скруббер и через дымосос и дымовую трубу выбрасываются в атмосферу.

  • Все оборудование объединено в единый производственный комплекс.

  • Переработка отходов и получение из ее продуктов строительных и других материалов осуществляется наследующих производственных участках:

  • - участке по термической переработке отходов;

  • участке по производству пирозита;

  • участке по производству металлической фибры;

  • участке по переработке резинотехнических изделий;

  • участке по переработке коагулянта и пигмента;

  • участке по переработке гальваностоков.

  • Технологии всех производственных участков взаимосвязаны. Объединяющим является принцип безотходности производства: продукты переработки отходов на одном производственном участке являются либо товарной продукцией, либо исходным материалом для переработки на другом участке. В конечном итоге из твердых бытовых, медицинских и ряда промышленных отходов производятся: пористый наполнитель, красящие пигменты и резиновая крошка. Избыток тепла, образующийся в результате работы установок комплекса, используется для переработки загрязненного снега и отопления производственных помещений.

  • Первый из подобных комплексов - Региональный экологический центр ЮВАО г. Москвы - создан и успешно работает на территории Юго-Восточного административного округа столицы. Производительность центра - 25 тыс. тонн отходов в год.

  • Относительно низкая себестоимость оборудования, а также возможность реализации получаемых в результате переработки отходов материалов, определяют срок окупаемости комплекса в 2,1 года.

  • ОАО «Уральский институт металлов» предложены технологии комплексной переработки железосодержащих отходов предприятий черной металлургии и сухой грануляции шлака с утилизацией его тепла. В основу комплексной технологии заложены отработанные в отечественной и зарубежной металлургии процессы. Технологическая схема включает термическое обезмасливание мелкой окалины из вторичных отстойников прокатных цехов, сгущение и частичное обезвоживание шламов, агломерацию и холодное или горячее брикетирование отходов в различном сочетании с добавками с целью получения продуктов, удовлетворяющих требованиям доменного и сталеплавильного переделов. При необходимости отходы с повышенным содержанием цинка могут быть металлизованы с попутной отгонкой и улавливанием оксида цинка. Схема имеет блочную структуру и может быть реализована по частям, в том числе и на предприятиях с неполным металлургическим циклом. В зависимости от видов, количества, физических и химических свойств образующихся отходов, имеющегося задействованного и резервного оборудования в основных и вспомогательных цехах, а также на близрасположенных предприятиях, комплексная технологическая схема подлежит корректировке с целью максимального учета местных условий и минимизации дополнительных капитальных затрат.

  • Преимущества технологии:

  • полное использование текущих железосодержащих отходов;

  • - возможность утилизации заскладированных отходов из шламонакопителей;

  • снижение потребности в привозном сырье;

  • высокое качество получаемых продуктов и их эффективное применение в производстве;

  • максимальное использование резервных производственных площадей и оборудования при минимальных дополнительных капитальных затратах;

  • уменьшение затрат на содержание отвалов и улучшение экологической обстановки;

  • высокая экономическая эффективность и быстрая окупаемость затрат.

  • Предлагается также технология и установка для грануляции жидких шлаков воздухом с утилизацией до 45-50% тепла расплава. Производительность установки изменяется в пределах 1,5-4,0 т/час. Конструкция узла распыливания обеспечивает проработку 100% жидкой части без образования корок и настылей и снижает энергозатраты на дробление шлака до 0,7-0,8 кВт-ч/т. Получаемый гранулят имеет средний фракционный состав: более 5,0 мм - 0,2-0,5%; 2,5-5,0 мм - 20-25%; 1,25-2,5 мм - 40-50%; 0,63-1,25 мм - 30-35%; менее 0,63 мм - остальное.

  • При грануляции самораспадающихся шлаков происходит их стабилизация и исключается образование пыли при охлаждении гранул. Отработанный воздух обеспыливается и передается на регенерацию тепла. Вредных газообразных продуктов не выделяется. Весь процесс осуществляется в автоматическом режиме.

  • Тепло шлака утилизируется в виде горячей воды, пара и горючего воздуха. Соотношение между объемами утилизаторов могут меняться в широких пределах.

  • В зависимости от химического состава исходного шлака гранулят может быть использован в агломерационном производстве, цементной промышленности, в дорожном строительстве, сельском хозяйстве и т.п. Грануляция способствует повышению гидравлической активности шлаков.

  • Технология сухой грануляции опробована на Череповецком и Осколь-ском металлургических комбинатах, Верх-Исетском металлургическом, Се-ровском и Актюбинском ферросплавных заводах.

  • В производстве стекла и стеклянного волокна твердые отходы могут достигать 50-70%, а в производстве стеклянного волокна отходы составляют не менее 15-30% от выпуска годной продукции. Задачи промышленной экологии, требования к малоотходным производствам и технологии стекловарения предопределили основные варианты рационального использования получаемых отходов как вторичных материальных ресурсов. Неоднородный состав отходов, их специфические свойства создают основные трудности повторного их использования в процессах стекловарения. Комплекс проведенных исследований в Московском государственном университете инженерной экологии позволил разработать оригинальные методы промышленной рекуперации отходов.

  • Способ рекуперации отходов стекловолокна путем переплавки, включающий кучевую загрузку через окно 1 отходов 12, их варку при температуре °С, гомогенизацию расплава и термическую грануляцию, осуществляют в реакторе с двойным сводом. Реактор снабжен плавильным бассейном 11, каналом кондиционирования 10, узлами подачи топлива 2, 7 и воздуха 5. Каналы ввода воздуха и топлива снабжены устройствами для изменения угла их наклона, нижняя часть составного свода 6 в конце плавильного бассейна выполнена с наклоном под углом 25±45°. Термический гранулятор 9 выполнен со штуцерами ввода и вывода охлаждающей воды и снабжен форсункой с механизмом регулирования угла наклона относительно вытекающей струи стекломассы. Термическое гранулирование струи стекломассы ведут при ее вязкости 105-109 Пз струей воды под давлением 0,15-0,3 МПа при соотношении струи расплава стекломассы и воды 1,4-2 и соударяющихся под углом 45-80° на высоте, равной 15-30 диаметров отверстия питателя. Применение в реакторе двойного свода с теплообменником 5 и фильтра 3 позволяет эффективно использовать тепло отходящих газов 4 и снижать перепад температур между верхним и нижним строением плавильного бассейна, что резко снижает выбросы в атмосферу из расплава вредных и дефицитных компонентов и значительно улучшает структуру получаемых гранул. Диаметр получаемых гранул колеблется от 2 до 4 мм. Производительность по гранулам составляет 10 т/сут.

  • Оптимальные условия в объеме отходов и получаемом расплаве, минимальные потери при сгорании топлива и стабилизация химического состава стеклогранул, соответствующего требованиям на сырьевые материалы для стекловарения, позволили по сравнению с имеющимися решениями снизить расход топлива на 40%, повысить производительность в 2,5-3 раза и значительно снизить выбросы в окружающую среду соединений бора. Экономия минерального сырья при подготовке стекольной шихты с использованием специально переработанных отходов основного производства достигает 30%.

  • Способ рекуперации отходов стекловолокна путем их механического измельчения в сочетании с термообработкой при температуре 450-830 °С в туннельной или барабанной печи и последующим резким охлаждением заключается в следующем. Стеклянные нити в мягкой и твердой фазах, прошедшие операции сбора, транспортировки и сортировки направляются в туннельную печь в виде слоя определенных размеров и подвергают термообработке при температуре 450-830 °С. При этом размеры слоя обеспечивают равномерный отжиг отходов и удаление органического или неорганического покрытия их поверхности по всему объему.

  • Подготовленные таким образом отходы подают в камеру охлаждения с целью резкого снижения их температуры. Охлаждение осуществляют за счет термического удара при перепаде, равном Тсг, где Тег - температура сгорания наиболее термостойкого компонента покрытия стеклянных нитей или их отходов. Резкий перепад температур вызывает спонтанные структурные изменения в объеме переработанного материала, происходит его разупрочнение и наблюдается эффект массового самоизмельчения отдельных волокон отходов. Далее отходы с пониженной по сравнению с до операции резкого охлаждения прочностью на истирание и излом направляются в установку для их измельчения, например, в молотковую дробилку. Процесс измельчения ведет при отношении твердой фазы к мягкой, большем не менее чем в 3 раза отношения твердой фазы к мягкой перед термообработкой. Дополнительно может осуществляться ввод возвратного стеклобоя в измельчитель или в печь отжига, количество которого может изменяться в диапазоне 2-45% от массы отходов. Ввод возвратного стеклобоя в измельчитель осуществляется с целью интенсификации процесса измельчения отходов. В этом случае стеклобой выполняет роль дополнительных помольных тел. Одновременно решается вопрос вторичного использования стеклобоя. Ввод возвратного стеклобоя в печь отжига используется при наличии в стекле кусков размером более 30-70 мм. За счет термоудара такие куски разрушаются на фракции с размером 1-15 мм, которые затем направляются в измельчитель в качестве помольных тел и для дополнительного их измельчения до фракции с максимальным размером 0,8-1,0 мм.

  • Технико-экономический эффект от использования этого способа рекуперации выражается в увеличении производительности процесса в 1,4-1,7 раза, снижении энергозатрат на 32-43% и уменьшении загрязнении окружающей среды. Использование в стекловарении порошка из отходов целевого продукта путем его добавки в качестве комплексного компонента в традиционную порошковую или компактированную шихту позволяет экономить до 45% дорогостоящего минерального сырья.

  • На основе разработанных технологий вторичной переработки промышленных и бытовых отходов стекла и стекловолокна получены новые материалы и изделия, отвечающие в полной мере требованиям экологической экспертизы и промышленного дизайна: стеклогранулят, стеклопорошки, стеклянные микрошарики и полые микросферы, воднодисперсионные краски, облицовочная стеклоплитка различной фактуры и оттенков и другие материалы.

  • Создание новых лакокрасочных композиций с повышенной прочностью, термостойкостью и износостойкостью, малым тепловым расширением и низкой стоимостью становится возможным благодаря разработке новых составов, в частности, применению наполнителей с улучшенными свойствами.

  • Такими уникальными характеристиками обладают мелкодисперсные системы, состоящие из сферических частиц стекла с размерами от 3 мкм до 400 мкм. Гранулометрический и химический составы наполнителей являются основными критериями для выбора конкретной области их использования. Идеальная форма поверхности, отсутствие острых кромок обеспечивают равномерное распределение напряжений вокруг частиц и улучшение механических и потребительских характеристик наполненных материалов.

  • Предложен состав антикоррозионной композиции, предназначенной для обработки и восстановления покрытий днища кузова легковых автомобилей, а также для защиты от коррозии химического и нефтегазового оборудования. За счет введения в битумную основу стеклянных наполнителей увеличивается гидрофобность и адгезионная способность, возрастает ударная прочность и термостойкость покрытия, а также повышается проникающая способность наносимой композиции. Композиция рекомендована также в качестве клея для различных конструкционных материалов.

  • Разработано аппаратурно-технологическое оформление линии для производства воднодисперсионной краски различного назначения. В качестве наполнителя 2 латексной основы используются микрошарики, микросферы, а также порошки из промышленного и бытового стеклобоя. В смесителе 1 происходит перемешивание всех компонентов 3, необходимых для получения воднодисперсионной композиции. Полученный состав накапливается в бункере 4 и с помощью оборудования по дозированию 5 и расфасовке 6 направляется в бункер хранения готового продукта.

  • Воднодисперсионная композиция наносится на бетонную, оштукатуренную, кирпичную, деревянную и другие поверхности без предварительной их подготовки. Срок службы покрытия по сравнению с аналогом возрос в 3-7 раз.

  • Предлагаются к реализации также составы рефлектирующих эмалей и мастик, в которых светоотражающую функцию выполняют стеклянные микроизделия.

  • В НПО «Радон» переработке подвергаются радиоактивные отходы средний и низкой активности.

  • В целях экономии объема хранилищ и обеспечения безопасности при длительном хранении твердые РАО перед захоронением подвергаются переработке сжиганием и прессованием. Сжигаются горючие отходы: древесина, бумага, ветошь, спецодежда, биологические отходы и т.п. Коэффициент сокращения объема - 60-80. Образующаяся зола отверждается методом цементирования, превращаясь в монолитные блоки. Высокоэффективная система газоочистки обеспечивает надежную защиту атмосферного воздуха.

  • Прессованию подвергаются негорючие отходы или те, сжигание которых нецелесообразно ввиду содержания опасных веществ: металлоизделия, резина, пластмасса, лабораторное оборудование. Коэффициент сокращения объема - 4-8.

  • Крупногабаритные и свехпрочные конструкции поступают на захоронение в индивидуальных контейнерах без переработки. Пустоты, образующиеся в хранилище между упаковками с РАО, заполняются цементным раствором.

  • Жидкие РАО подвергаются различным методам очистки и обезвреживания, позволяющим сконцентрировать радиоактивные вещества в малом объеме. На конечной стадии они переводятся в твердые формы, безопасные при длительном хранении.

  • Особенности переработки РАО по данной технологии:

  • способность перерабатывать отходы сложного морфологического состава с содержанием негорючих компонентов до 40%;

  • относительно малые объемы отходящих газов и малые уносы радиоактивности из печи;

  • высокая степень сокращения первоначального объема отходов;

  • получение конечного продукта в виде плавленого химически стойкого материала.

  • Технические характеристики

  • Производительность по твердым горючим отходам, кг/ч 200

  • Производительность по жидким горючим отходам, кг/ч 40

  • Максимальная температура в зоне плавления, °С 1650

  • Габариты, мм:

  • диаметр подовой части 1100

  • высота шахты 5000

  • Объем отходящих газов печи, м3 1500

  • Расход охлаждающей воды, м3 35

  • Коэффициент сокращения объема 10-100

  • Эффективность системы газоочистки:

  • по аэрозолям 99,5

  • по радионуклидам 99,5

      • Санитарное захоронение отходов

  • Санитарное захоронение отходов является альтернативой современной практике сброса ТПБО на открытые свалки. Концепция метода нацелена на создание полигонов как экономически нейтральных производственных объектов. Она включает следующие основные принципы: максимальное использование рабочего объема полигона; контроль состава отходов, поступающих на захоронение; учет реальной массы, поступающей на захоронение; минимизация негативного влияния ингредиентов отхода на биосферу и др..

  • Санитарному захоронению подлежат отходы, обезвреживание которых нецелесообразно по экономическим соображениям или технически затруднено. Причем наземное складирование вновь образуемых твердых отходов недопустимо. Существующие отвалы, например, фос-фогипса, являются потенциальным сырьем для стекольной промышленности.

  • Полигон для захоронения отходов должен быть обустроен природоохранными техническими средствами, обеспечивающими перехват водных и газовых эмиссий, формируемых структурой отходов. К этим средствам относятся: противофильтрационный экран в основании полигона, система дренажа для сбора фильтрата в основании полигона, система дренажа для отвода поверхностного стока с прилегающих территорий, система откачки и очистки свалочного фильтрата, газодренажная система, система откачки и обезвреживания газовых эмиссий, непроницаемый поверхностный рекультивационный экран.

  • Принцип максимального использования рабочего пространства предполагает реальное доведение плотности ТПБО не ниже 0,8 т/м3 и реализацию высотной схемы складирования. Средние затраты захоронения отходов в 1978 г составляли 110-340 $/т, химическая фиксация в твердое состояние увеличивает затраты примерно на 200 $/т, фиксация отходов капсулированием - на 100 $/т.

      • Экологическая оценка влияния промышленности на природу

  • Оценка природоохранительной деятельности предприятий производится по различным показателям: достигаемой степени очистки вредных выбросов; уровню загрязнения окружающей среды; капитальным и эксплуатационным затратам на экобиозащитную технику и т.д..

  • Существуют нормы абсолютного количества вредных веществ на 1 т готовой продукции. В качестве критерия оценки можно рекомендовать индекс относительной токсичности массы, применяемый в химической промышленности:

  • где ПДК1 и /7ДК) - предельно допустимые концентрации вещества, соответственно принятого за эталон и сравниваемого.

  • При помощи индекса относительной токсичности и концентрации вещества в выбросе С можно рассчитать относительную токсичность единичного li, ln и суммарного lN выбросов:

  • Общий индекс относительного загрязнения среды определяется по формуле

  • где /ft, /Jv, /$ - индексы относительной токсичности выбросов в атмосферу, воду и на поверхность литосферы; а, р - коэффициенты, характеризующие перенос загрязняющих веществ в поверхностные или грунтовые воды с учетом фильтрации, сорбции, трансформации.

  • ОТМ выбросов определяется с учетом объемов единичного, группового и суммарного выбросов:

  • где Mh Мп, MN - единичная, групповая и суммарная токсичные массы выбросов; Ц, Vni VN- единичный, групповой и суммарный объем выбросов. Общий баланс ОТМ технологического процесса

  • где Мс + Мв - масса отходов, поступающих в окружающую среду с газовыми выбросами и сточными водами; I Мн - масса нейтрализованных отходов; 1Мр - масса рассеянных отходов.

  • Относительная экологичность процесса, объекта, предприятия и т.д. определяется по формуле,%,

  • где 1,2- индексы, характеризующие величины либо до и после внедрения нового аппарата, метода, процесса, либо перед очистными сооружениями и после них.

  • Для облегчения дальнейших расчетов и получения критериев, численно сопоставимых с принятыми в других методиках, выбирают ПДК) - 1 мг/л для гидросферы. Значение единичной ПДК для атмосферного воздуха ПДКав рассчитывается из известной системы уравнений:

  • где ПДКав, ПДКвт ПДКв - предельно допустимые концентрации соответственно в атмосферном воздухе, в воздухе промышленных помещений и в водоеме. ПДК для воздуха выражается в миллиграммах на кубический метр, для воды - в миллиграммах на литр. При решении этой системы получаем:

  • В качестве единицы ОТМ принята условная единица 1 етм, соответствующая загрязненности 1 м3 природной или техногенной среды 1 кг ОТМ.

  • Оценивая уровень загрязнения окружающей среды, необходимо иметь в виду, что для одной природной сферы на основании существующих санитарных норм обязательно соблюдение условия

  • Если в сточных водах, выпускаемых с предприятия в водоем, присутствуют одновременно загрязняющие вещества, относящиеся к различным группам по лимитирующим показателям вредности, следует вначале привести их к суммарным значениям ОТМ внутри каждой группы, а затем к общей ОТМ:

  • Сопоставление частных ОТМ в выбросах в водоем по группам вредности позволяет выявить, по каким именно веществам создается неблагоприятная обстановка в водоеме и требуется принятие мер. ОТМ каждой группы веществ, отнесенная к площади водосбора в единицу времени, представляет собой модуль химического стока в единицах ОТМ с площади F промышленной площадки:

  • который в сопоставлении с модулем естественно-ионного стока характеризует нагрузку на окружающую среду в исследуемом районе.

  • Так как токсичность вещества для живых организмов - одно из проявлений его активности, можно сделать чрезвычайно важный вывод о наличии пока еще не исследованной коррелятивной связи между его токсичностью и эксергией и далее токсичностью химических веществ, элементов, ионов и их энергетическими характеристиками. Это дает возможность определять в дальнейшем ПДК не эмпирическим путем, как это делается в настоящее время, а на основе строгих термодинамических характеристик, большинство из которых табулировано.

      • Экономическая эффективность безотходных производств

  • При безотходном производстве рационально используются сырье и энергия и не оказывается вредного влияния на окружающее пространство. Экономический эффект в этом случая образуется за счет непосредственного возвращения сырья в производство Эн в. предотвращения социально-экономического ущерба от загрязнения окружающей среды Эу и снижения затрат на добычу сырья ЭР:

  • Непосредственный эффект от использования отходов производства

  • где Z- замыкающие затраты на данный вид продукции; л - количество используемых отходов; f - коэффициент, учитывающий количественное соотношение отходов и исходного сырья; Зп - приведенные затраты на вовлечение отходов в производственный цикл.

  • где Ув - возможный ущерб при отсутствии природоохранных мероприятий, выраженных в стоимостной форме; Уф - фактический ущерб, выраженный в стоимостной форме и существующий в данное время.

  • Региональный эффект ЭР может быть предоставлен в виде снижения приведенных затрат на единицу продукции за счет использования отходов производства.

  • Социально-экономический эффект безотходных производств определяется по комплексному критерию: - сумма всех эффектов, достигаемых при внедрении безотходного производства:

  • где 3j - эффект от производства конечной продукции, полученной при внедрении безотходного производства и более полного использования исходного сырья; Э2 - эффект от потребления конечной продукции, полученной при внедрении безотходного производства и более полного использования исходного сырья; Э3 - экономия затрат на разведку, добычу и транспортировку отдельного ресурса; Э4 - эффект от комплексного развития региона и совершенствования размещения производственных сил; Э5 - внешнеторговый эффект; У - ущерб от загрязнения окружающей среды отходами производства и потребления; Зп - полные затраты на осуществление безотходного производства.

  • При наличии ряда вариантов безотходного производства должен быть выбран вариант с наибольшим коэффициентом абсолютной социально-экономической эффективности при равных или близких по значению народнохозяйственных затратах.

  • 10 вопрос

  • Введение

  • Шум как гигиенический фактор -- это совокупность звуков различной частоты и интенсивности, которые воспринимаются органами слуха человека и вызывают неприятное субъективное ощущение.

  • Шум как физический фактор представляет собой волнообразно распространяющееся механическое колебательное движение упругой среды, носящее обычно случайный характер.

  • Производственным шумом называется шум на рабочих местах, на участках или на территориях предприятий, который возникает во время производственного процесса. На человека в процессе его трудовой деятельности могут воздействовать опасные (вызывающие травмы) и вредные (вызывающие заболевания)производственные факторы. Опасные и вредные производственные факторы (ГОСТ 12.0.003-74) подразделяются на четыре группы: физические,химические,биологические и психофизиологические.

  • К опасным физическим факторам относятся: движущиеся машины и механизмы; различные подъемно-транспортные устройства и перемещаемые грузы; незащищенные подвижные элементы производственного оборудования (приводные и передаточные механизмы, режущие инструменты, вращающиеся и перемещающиеся приспособления и др.); отлетающие частицы обрабатываемого материала и инструмента, электрический ток, повышенная температура поверхностей оборудования и обрабатываемых материалов и т.д.

  • Вредными для здоровья физическими факторами являются: повышенная или пониженная температура воздуха рабочей зоны; высокие влажность и скорость движения воздуха; повышенные уровни шума, вибрации, ультразвука и различных излучений - тепловых, ионизирующих, электромагнитных, инфракрасных и др. К вредным физическим факторам относятся также запыленность и загазованность воздуха рабочей зоны; недостаточная освещенность рабочих мест, проходов и проездов; повышенная яркость света и пульсация светового потока.

  • Химические опасные и вредные производственные факторы по характеру действия на организм человека подразделяются на следующие подгруппы: общетоксические, раздражающие, сенсибилизирующие (вызывающие аллергические заболевания), канцерогенные (вызывающие развитие опухолей), мутогенные (действующие на половые клетки организма). В эту группу входят многочисленные пары и газы: пары бензола и толуола, окись углерода, сернистый ангидрид, окислы азота, аэрозоли свинца и др., токсичные пыли, образующиеся, например, при обработке резанием бериллия, свинцовистых бронз и латуней и некоторых пластмасс с вредными наполнителями. К этой группе относятся агрессивные жидкости (кислоты, щелочи), которые могут причинить химические ожоги кожного покрова при соприкосновении с ними.

  • К биологическим опасным и вредным производственным факторам относятся микроорганизмы (бактерии, вирусы и др.) и макроорганизмы (растения и животные), воздействие которых на работающих вызывает травмы или заболевания.

  • К психофизиологическим опасным и вредным производственным факторам относятся физические перегрузки (статические и динамические) и нервно-психические перегрузки (умственное перенапряжение, перенапряжение анализаторов слуха, зрения и др.).

  • Между вредными и опасными производственными факторами наблюдается определенная взаимосвязь. Во многих случаях наличие вредных факторов способствует проявлению травмоопасных факторов. Например, чрезмерная влажность в производственном помещении и наличие токопроводящей пыли (вредные факторы) повышают опасность поражения человека электрическим током (опасный фактор).

  • Уровни воздействия на работающих вредных производственных факторов нормированы предельно-допустимыми уровнями, значения которых указаны в соответствующих стандартах системы стандартов безопасности труда и санитарно-гигиенических правилах.

  • шум производственный механический

    • Характеристики и виды производственных шумов

  • Интенсивное шумовое воздействие на организм человека неблагоприятно влияет на протекание нервных процессов, способствует развитию утомления, изменениям в сердечно-сосудистой системе и появлению шумовой патологии, среди многообразных проявлений которой ведущим клиническим признаком является медленно прогрессирующее снижение слуха по типу кохлеарного неврита.

  • В производственных условиях источниками шума являются работающие станки и механизмы, ручные механизированные инструменты, электрические машины, компрессоры, кузнечно-прессовое, подъемно-транспортное, вспомогательное оборудование (вентиляционные установки, кондиционеры) и т.д.

  • Допустимые шумовые характеристики рабочих мест регламентируются ГОСТ 12.1.003-83 "Шум, общие требования безопасности" (изменение I.III.89) и Санитарными нормами допустимых уровней шума на рабочих местах (СН 3223-85) с изменениями и дополнениями от 29.03.1988 года №122-6/245-1.

  • Производственные шумы имеют различные спектральные и временные характеристики, которые пределяют степень их воздействия на человека.По этим признакам шумы подразделяют на несколько видов.

  • Таблица. Классификация шумов

    • Способ классификации

    • Вид шума

    • Характеристика шума

    • По характеру спектра шума

    • · широкополосные

    • Непрерывный спектр шириной более одной октавы

    • · тональные

    • В спектре которого имеются явно выраженные дискретные тона

    • По временным характеристикам

    • · постоянные

    • Уровень звука за 8 часовой рабочий день изменяется не более чем на 5 дБ(А)

      • непостоянные:

    • § колеблющиеся во времени

    • § прерывистые

    • § импульсные

    • Уровень звука за 8 часовой рабочий день изменяется более чем на 5 дБ(А)

    • Уровень звука непрерывно изменяется во времени

    • Уровень звука изменяется ступенчато не более чем на 5 дБ(А), длительность интервала 1с и более

    • Состоят из одного или нескольких звуковых сигналов, длительность интервала меньше 1с

  • По временным характеристикам шумы подразделяются на постоянные и непостоянные. В свою очередь непостоянные шумы подразделяются на колеблющиеся во времени, прерывистые и импульсные.

  • В качестве характеристик постоянного шума на рабочих местах, а также для определения эффективности мероприятий по ограничению его неблагоприятного влияния, принимаются уровни звукового давления в децибелах (дБ) в октавных полосах со среднегеометрическими частотами 31,5; 63; 125; 250; 1000; 2000; 4000; 8000 Гц.

  • В качестве общей характеристики шума на рабочих местах применяется оценка уровня звука в дБ(А), представляющая собой среднюю величину частотных характеристик звукового давления.

  • Характеристикой непостоянного шума на рабочих местах является интегральный параметр - эквивалентный уровень звука в дБ(А).

  • Основные мероприятия по борьбе с шумом - это технические мероприятия, которые проводятся по трем главным направлениям:

  • - устранение причин возникновения шума или снижение его в источнике;

  • - ослабление шума на путях передачи;

  • - непосредственная защита работающих.

  • Наиболее эффективным средством снижения шума является замена шумных технологических операций на малошумные или полностью бесшумные, однако этот путь борьбы не всегда возможен, поэтому большое значение имеет снижение его в источнике. Снижение шума в источнике достигается путем совершенствования конструкции или схемы той части оборудования, которая производит шум, использования в конструкции материалов с пониженными акустическими свойствами, оборудования на источнике шума дополнительного звукоизолирующего устройства или ограждения, расположенного по возможности ближе к источнику.

  • Одним из наиболее простых технических средств борьбы с шумом на путях передачи является звукоизолирующий кожух, который может закрывать отдельный шумный узел машины.

  • Значительный эффект снижения шума от оборудования дает применение акустических экранов, отгораживающих шумный механизм от рабочего места или зоны обслуживания машины.

  • Применение звукопоглощающих облицовок для отделки потолка и стен шумных помещений приводит к изменению спектра шума в сторону более низких частот, что даже при относительно небольшом снижении уровня существенно улучшает условия труда.

  • Учитывая, что с помощью технических средств в настоящее время не всегда удается решить проблему снижения уровня шума большое внимание должно уделяться применению средств индивидуальной защиты (антифоны, заглушки и др.). Эффективность средств индивидуальной защиты может быть обеспечена их правильным подбором в зависимости от уровней и спектра шума, а также контролем за условиями их эксплуатации.

    • Действие шума на организм человека

  • Шум, даже когда он невелик (при уровне 50--60 дБА), создает значительную нагрузку на нервную систему человека, оказывая на него психологическое воздействие. Это особенно часто наблюдается у людей, занятых умственной деятельностью. Слабый шум различно влияет на людей. Причиной этого могут быть: возраст, состояние здоровья, вид труда, физическое и душевное состояние человека б момент действия шума и другие факторы. Степень вредности какого-либо шума зависит также от того, насколько он отличается от привычного шума. Неприятное воздействие шума зависит и от индивидуального отношения к нему. Так, шум, производимый самим человеком, не беспокоит его, в то время как небольшой посторонний |^ум может вызвать сильный раздражающий эффект.

  • Известно, что ряд таких серьезных заболеваний, как гипертоническая и язвенная болезни, неврозы, в ряде случаев желудочно-кишечные и кожные заболевания, связаны с перенапряжением нервной системы в процессе труда и отдыха. Отсутствие необходимой тишины, особенно в ночное время, приводит к преждевременной усталости, а часто и к заболеваниям. В этой связи необходимо отметить, что шум в 30--40 дБА в ночное время может явиться серьезным беспокоящим фактором. С увеличением уровней до 70 дБА и выше шум может оказывать определенное физиологическое воздействие на человека, приводя к видимым изменениям в его организме.

  • Под воздействием шума, превышающего 85--90 дБА, в первую _очередь снижается слуховая чувствительность на высоких частотах.

  • Сильный шум вредно отражается на здоровье и работоспособности людей. Человек, работая при шуме, привыкает к нему, но продолжительное действие сильного шума вызывает общее утомление, может привести к ухудшению слуха, а иногда и к глухоте, нарушается процесс пищеварения, происходят изменения объема внутренних органов.

  • Воздействуя на кору головного мозга, шум оказывает раздражающее действие, ускоряет процесс утомления, ослабляет внимание и замедляет психические реакции. По этим причинам сильный шум в условиях производства может способствовать возникновению травматизма, так как на фоне этого шума не слышно сигналов -транспорта, автопогрузчиков и других машин.

  • Эти вредные последствия шума выражены тем больше, чем сильнее шум и чем продолжительнее его действие.

    • Классификация методов защиты от шума

  • Средства защиты от шума подразделяют на средства коллективной и индивидуальной защиты.

  • Меры относительно снижения шума следует предусматривать на стадии проектирования промышленных объектов и оборудования. Особое внимание следует обращать на вынос шумного оборудования в отдельное помещение, что позволяет уменьшить число работников в условиях повышенного уровня шума и осуществить меры относительно снижения шума с минимальными расходами средств, оборудования и материалов. Снижение шума можно достичь только путем обезшумливания всего оборудования с высоким уровнем шума.

  • Работу относительно обезшумливания действующего производственного оборудования в помещении начинают с составления шумовых карт и спектров шума, оборудования и производственных помещений, на основании которых выносится решение относительно направления работы.

  • Борьба с шумом в источнике его возникновения -- наиболее действенный способ борьбы с шумом. Создаются малошумные механические передачи, разрабатываются способы снижения шума в подшипниковых узлах, вентиляторах.

  • Архитектурно-планировочный аспект коллективной защиты от шума связан с необходимостью учета требований шумозащиты в проектах планирования и застройки городов и микрорайонов. Предполагается снижение уровня шума путем использования экранов, территориальных разрывов, шумозащитных конструкций, зонирования и районирования источников и объектов защиты, защитных полос озеленения.

  • Организационно-технические средства защиты от шума связаны с изучением процессов шумообразования промышленных установок и агрегатов, транспортных машин, технологического и инженерного оборудования, а также с разработкой более совершенных малошумных конструкторских решений, норм предельно допустимых уровней шума станков, агрегатов, транспортных средств и т. д.

  • Акустические средства защиты от шума подразделяются на средства звукоизоляции, звукопоглощения и глушители шума.

  • Снижение шума звукоизоляцией. Суть этого метода заключается в том, что шумоизлучающий объект или несколько наиболее шумных объектов располагаются отдельно, изолировано от основного, менее шумного помещения звукоизолированной стеной или перегородкой. Звукоизоляция также достигается путем расположения наиболее шумного объекта в отдельной кабине. При этом в изолированном помещении и в кабине уровень шума не уменьшится, но шум будет влиять на меньшее число людей. Звукоизоляция достигается также путем расположения оператора в специальной кабине, откуда он наблюдает и руководит технологическим процессом. Звукоизолирующий эффект обеспечивается также установлением экранов и колпаков. Они защищают рабочее место и человека от непосредственного влияния прямого звука, однако не снижают шум в помещении.

  • Звукопоглощение достигается за счет перехода колебательной энергии в теплоту вследствие потерь на трение в звукопоглотителе. Звукопоглощающие материалы и конструкции предназначены для поглощения звука как в помещениях с источником, так и в соседних помещениях. Потери на трение наиболее значительны в пористых материалах, которые вследствие этого используются в звукопоглощающих материалах. Звукопоглощение используется при акустической обработке помещений.

  • Акустическая обработка помещения предусматривает покрытие потолка и верхней части стен звукопоглощающим материалом. Вследствие этого снижается интенсивность отраженных звуковых волн. Дополнительно к потолку могут подвешиваться звукопоглощающие щиты, конусы, кубы, устанавливаться резонаторные экраны, тоесть искусственные поглотители. Искусственные поглотители могут применяться отдельно или в сочетании с облицовкой потолка и стен. Эффективность акустической обработки помещений зависит от звукопоглощающих свойств применяемых материалов и конструкций, особенностей их расположения, объема помещения, его геометрии, мест расположения источников шума. Эффект акустической обработки больше в низких помещениях (где высота потолка не превышает 6 м) вытянутой формы. Акустическая обработка позволяет снизить шум на 8 дБА.

  • Глушители шума применяются в основном для снижения шума различных аэродинамических установок и устройств.

  • В практике борьбы с шумом используют глушители различных конструкций, выбор которых зависит от конкретных условий каждой установки, спектра шума и требуемой степени снижения шума.

  • Глушители разделяются на абсорбционные, реактивные и комбинированные. Абсорбционные глушители, содержащие звукопоглощающий материал, поглощают поступившую в них звуковую энергию, а реактивные отражают ее обратно к источнику. В комбинированных глушителях происходит как поглощение, так и отражение звука.

  • Заключение

  • Проблемы защиты окружающей среды затрагивают всех людей. Пытаясь разобраться в проблемах воздействия человека на окружающую среду, способах защиты от негативных проявлений этого воздействия, человечество создало множество наук и научных направлений, каждое из которых оперирует своей терминологией, использует свои методы исследований. Одной из таких наук является "Безопасность жизнедеятельности".

  • "Безопасность жизнедеятельности" возникла на стыке технических, естественных и социальных наук.

  • Рассматривая "Безопасность жизнедеятельности" как учебную дисциплину, преподаваемую во всех технических ВУЗах России, ее можно определить как прикладную дисциплину, представляющую собой систему научно-обоснованных инженерно-технических мероприятий, направленных на сохранение качества окружающей производственной среды и здоровья человека в условиях растущего промышленного производства.

  • «Безопасность жизнедеятельности» - это область научных знаний, изучающая вредные, опасные и особоопасные антропогенные факторы и способы защиты от них человека в любых условиях его обитания.

  • Антропогенные факторы, возникающие в процессе жизнедеятельности воздействуют как на окружающую среду так и на самого человека. При этом в условиях производства воздействие этих факторов усиливается. В этой связи имеет смысл говорить об антропогенных производственных факторах.

  • Антропогенный производственный фактор (АПФ) - фактор, способный вызвать негативные изменения здоровья человека, непосредственно занятого в производственном процессе, и антропогенные изменения окружающей среды, подверженной воздействию данного производственного процесса.

  • Еще раз подчеркнем, что речь идет о факторах, которые обусловлены трудовой, производственной деятельностью.

  • Рассматривая воздействие АПФ на производственную окружающую среду и человека можно сформулировать следующие требования:

    • АПФ при их комплексном воздействии на человека не должны оказывать отрицательного влияния на здоровье человека при его профессиональной деятельности в течение длительного времени;

    • АПФ не должны вызывать снижения надежности и качества деятельности человека (оператора) при действии их в течение дня.

  • При учете и нормировании АПФ различают следующие уровни их воздействия на человека:

    • комфортная производственная окружающая среда обеспечивает оптимальную динамику работоспособности человека (оператора), хорошее самочувствие и сохранение его здоровья;

    • относительно дискомфортная производственная окружающая среда обеспечивает при воздействии в течение определенного интервала времени заданную работоспособность и сохранение здоровья, но вызывает у человека субъективные ощущения и функциональные изменения, не выходящие за пределы нормы;

    • экстремальная производственная окружающая среда приводит к снижению работоспособности человека и вызывает функциональные изменения, выходящие за пределы нормы, но не ведущие к патологическим нарушениям;

    • сверхэкстремальная производственная окружающая среда приводит к возникновению в организме человека патологических изменений и (или) к невозможности выполнения работы.

  • АПФ можно классифицировать по разным признакам.

  • По своей природе АПФ могут быть: физическими, химическими, биологическими, психофизиологическими.

  • С другой стороны, по своему действию АПФ могут различаться на:

    • вредные - АПФ, воздействия которых на работающих в определенных условиях приводят к заболеванию или снижению работоспособности. К вредным АПФ можно отнести: шум, вибрацию, электромагнитные поля и др.

    • опасные - АПФ, воздействия которых на работающих в определенных условиях приводят к травме или другому резкому ухудшению здоровья. К опасным АПФ относятся - электрический ток, газообразный хлор в определенных концентрациях и др.

    • особоопасные - АПФ, которые при определенных условиях приводят к промышленной аварии, т.е. разрушительному высвобождению собственного энергозапаса промышленного предприятия, при котором сырье, промежуточные продукты, продукция предприятия, отходы производства, установленное на промышленной площадке технологическое оборудование, вовлекаясь в аварийный процесс, создают факторы для населения, персонала, окружающей среды и самого промышленного предприятия, приводящие к катастрофическим последствиям (ионизирующие излучения, пожар, взрыв, выброс большого количества газообразного хлора и др).

  • Следует отметить, что вредные антропогенные производственные факторы носят, как правило, детерминированный характер, а опасные и особоопасные - стохастический характер. В количественную оценку стохастических АПФ входит вероятность возникновения данного фактора.

  • Выявление и анализ антропогенных производственных факторов, разработка комплекса способов и средств, позволяющих достигнуть гармонизации взаимодействия человека с окружающей производственной средой являются по существу обязательными элементами обеспечения любых производственных процессов.

  • По данной работе можно сделать следующий вывод о том ,что шум вызывает нежелательную реакцию всего организма человека. Патологические изменения, возникшие под влиянием шума, рассматривают как шумовую болезнь.

  • Звуковые колебания могут восприниматься не только ухом, но и непосредственно через кости черепа (так называемая костная проводимость). Уровень шума, передаваемого этим путем, на 20--30 дБ меньше уровня, воспринимаемого ухом. Если при невысоких уровнях передача за счет костной проводимости мала, то при высоких уровнях она значительно возрастает и усугубляет вредное действие на человека.

  • При действии шума очень высоких уровней (более 145 дБ) возможен разрыв барабанной перепонки.

  • 11 вопрос

  • «Методы и средства защиты от вибрации» Выполнила: студентка экономического факультета Иванова Е.А. 22 гр Проверила: старший преподаватель Семибратова Т.В. Оренбург 2007 Содержание Введение                                                                                  3 1.Понятие о производственной вибрации                               4 2.Действие вибрации на организм человека                           5 3.Нормирование и средства оценки вибраций                       10 4.Методы и средства защиты от вибрации                             13 Заключение                                                                             16 Список литературы                                                                17 Введение. В условиях становления рыночной экономики проблемы безопасности жизнедеятельности становятся одним из самых острых социальных проблем. Связано это с травматизмом и профессиональными заболеваниями, приводящими в ряде случаев к летальным исходам, притом что более половины предприятий промышленности и сельского хозяйства относится к классу максимального профессионального риска. Рост профессиональных заболеваний и производственного травматизма, числа техногенных катастроф и аварий, неразвитость профессиональной, социальной и медицинской реабилитации пострадавших на производстве отрицательно сказываются на жизнедеятельности трудящихся, их здоровье, приводят к дальнейшему ухудшению демографической ситуации в стране. Подтверждением этого служат следующие факторы: высокий удельный вес работников, занятых на рабочих местах, не отвечающих эргономическим и санитарно-гигиеническим требованиям и правилам техники безопасности; быстрый рост уровня профессиональной заболеваемости и производственного травматизма; увеличение тяжести производственного травматизма и его уровня с летальным исходом. В своей работе я расскажу вам об одном из неблагоприятных производственных факторов - вибрации, отрицательно влияющем на производительность труда и здоровье самих работников. 1.Понятие о производственной вибрации Вибрация - механические колебания механизмов, машин или в соответствии с ГОСТ 12.1.012-78 вибрацию классифицируют следующим образом. По способу передачи на человека вибрацию подразделяют на общую, передающуюся через опорные поверхности на тело сидящего или стоящего человека, и локальную, передающуюся через руки человека. По направлению различают вибрацию, действующую вдоль осей ортогональной системы координат для общей вибрации, действующую вдоль всей ортогональной системы координат для локальной вибрации. По источнику возникновения вибрацию подразделяют на транспортную (при движении машин), транспортно-технологическую (при совмещении движения с технологическим процессом, мри разбрасывании удобрений, косьбе или обмолоте самоходным комбайном и т. д.) и технологическую (при работе стационарных машин) Вибрация характеризуется частотой f, т.е. числом колебаний и секунду (Гц), амплитудой А, т.е. смещением волн, или высотой подъема от положения равновесия (мм), скоростью V (м/с) и ускорением. Весь диапазон частот вибраций также разбивается на октавные полосы: 1, 2, 4, 8, 16, 32, 63 125, 250, 500, 1000, 2000 Гц. Абсолютные значения параметров, характеризующих вибрацию, изменяются в широких пределах, по этому используют понятие уровня параметров, представляющего собой логарифмическое отношение значения параметра к опорному или пороговому его значению. 2. Действие вибрации на организм человека. При работе в условиях вибраций производительность труда снижается, растет число травм. На некоторых рабочих мес­тах в сельскохозяйственном производстве вибрации превышают нормируемые значения, а в некоторых случаях они близки к предельным. Не всегда соответствуют нормам уровни вибраций на органах управления. Обычно в спектре вибрации преобладают низкочастотные вибрации отрицательно действующие на организм. Некоторые виды вибрации неблагоприятно воздействуют на нервную и сердечно-сосудистую системы, вестибулярный аппарат. Наиболее вредное влияние на организм человека оказывает вибрация, частота которой совпадает с частотой собственных колебаний отдельных органов, примерные значения которых следующие (Гц): желудок - 2...3; почки - 6...8; сердце - 4...6; кишечник- 2...4; вестибулярный аппарат - 0,5..Л,3; глаза - 40...100 и т.д. Воздействие на мускульные рефлексы достигает 20 Гц; нагру­женное массой оператора сиденье на тракторе имеет собственную частоту вибрации 1,5...1,8 Гц, а задние колеса трактора - 4 Гц. Организму человека вибрация передается в момент контакта с вибрирующим объектом: при действии на конечности возникает локальная вибрация, а на все тело - общая. Локальная вибрация поражает нервно-мышечные ткани и опорно-двигательный аппарат и приводит к спазмам периферических сосудов. При длительных и интенсивных вибрациях в некоторых случаях развивается профессиональная патология (к ней чаще приводит локальная вибрация): периферическая, церебральная или церебрально-периферическая вибрационная болезнь. В последнем случае наблюдаются изменения сердечной деятельности, общее возбуждение или, наоборот, торможение, утомление, появление болей, ощущение тряски внутренних органов, тошнота. В этих случаях вибрации влияют и на костно-суставной аппарат, мышцы, периферийное кровообращение, зрение, слух. Местные вибрации вызывают спазмы сосудов, которые развиваются с концевых фаланг пальцев, распространяясь на всю кисть, предплечье, и охватывают сосуды сердца. Тело человека рассматривается как сочетание масс с упругими элементами. В одном случае это все туловище с нижней частью позвоночника и тазом, в другом – верхняя часть туловища в сочетании с верхней частью позвоночника, наклоненной вперед. Для стоящего на вибрирующей поверхности человека существуют 2 резонансных пика на частотах 5…12 и 17…25 ГЦ, для сидящего на частотах 4…6 ГЦ. Для головы резонансные частоты находятся в области 20…30 Гц. В этом диапазоне частот амплитуда колебаний головы может превышать амплитуду колебаний плеч в 3 раза.Колебания внутренних органов, грудной клетки и брюшной полости обнаруживают резо­нанс на частотах 3,0...3,5 Гц. Максимальная амплитуда колебаний брюшной стенки наблюдается на частотах 7...8 Гц. С увеличением частоты колебаний их амплитуда при передаче по телу человека ослабляется. В положении стоя и сидя эти ослабления на костях таза равны 9 дБ на октаву изменения частоты, на груди и голове - 12дБ, на плече -12...14 дБ. Эти данные не распространяются на резонансные частоты, при воздействии которых происходит не ослабление, а увеличение колебательной скорости. В производственных условиях ручные машины, вибрация которых имеет максимальные уровни энергии (максимальный уровень виброскорости) в полосах низких частот (до 36 Гц), вызывают вибрационную патологию с преимущественным поражением нервно-мышечной ткани и опорно-двигательного аппарата. При работе с ручными машинами, вибрация которых имеет максимальный уровень энергии в высокочастотной области спектра (выше 125 Гц), возникают главным образом сосудистые расстройства. При воздействии вибрации низкой частоты заболевание возникает через 8... 10 лет, а при воздействии высокочастотной вибрации - через 5 лет и раньше. Общая вибрация разных параметром вызывает различную степень выраженности изменений нервно и системы (центральной и вегетативной), сердечнососудистой системы и вестибулярного аппарата. В зависимости от параметров (частота, амплитуда) вибрация может как положительно, так и отрицательно влиять на отдельные ткани и организм в целом. Вибрацию используют при лечении некоторых заболеваний, но чаще всего вибрацию (производственную) считают вредно влияющим фактором. Поэтому важно знать граничные характеристики, разделяющие позитивное и негативное влияние вибрации на человека. Впервые на полезное значение вибрации обратил внимание французский ученый аббат Сен Пьер, который в 1734 г. сконструировал вибрирующее кресло для домоседов, повышающее мышечный тонус и улучшающее циркуляцию крови. В начале XX в. в России профессор Военно-медицинской академии А. Е. Щербак доказал, что умеренная вибрация улучшает питание тканей и ускоряет заживление ран. Производственная вибрация, характеризующаяся значительной амплитудой и продолжительностью действия, вызывает у работающих раздражительность, бессонницу, головную боль, ноющие боли в руках людей, имею­щих дело с вибрирующим инструментом. При длительном воз­действии вибрации перестраивается костная ткань: на рентгено­граммах можно заметить полосы, похожие на следы перелома - участки наибольшего напряжения, где размягчается костная ткань. Возрастает проницаемость мелких кровеносных сосудов, нарушается нервная регуляция, изменяется чувствительность кожи. При работе с ручным механизированным инструментом может возникнуть акроасфиксия (симптом мертвых пальцев) - потеря чувствительности, побеление пальцев, кистей рук. При воздействии общей вибрации более выражены изменения со стороны центральной нервной системы: появляются головокружения, шум в ушах, ухудшение памяти, нарушение координации движений, вестибулярные расстройства, похудение. Основные параметры вибрации: частота и амплитуда колебаний. Колеблющаяся с определенной частотой и амплитудой точка движется с непрерывно меняющимися скоростью и ускорением: они максимальны в момент ее прохождения через исходное положение покоя и снижаются до нуля в крайних позициях. Поэтому колебательное движение характеризуется также скоростью и ускорением, представляющими собой производные от амплитуды и частоты. Причем органы чувств человека воспринимают не мгно­венное значение параметров вибрации, а действующее. Вибрацию часто измеряют приборами, шкалы которых отградуированы не в абсолютных значениях скорости и ускорения, а в относительных - децибелах. Поэтому характеристиками вибрации служат также уровень колебательной скорости и уровень колебательного ускорения. Рассматривая человека как сложную динамическую структуру с изменяющимися во времени параметрами, можно выделить частоты, вызывающие резкий рост амплитуд колебаний как всего тела в целом, так и отдельных его органов. При вибрации ниже 2 Гц, действующей на человека вдоль позвоночника, тело движется как единое целое. Резонансные частоты мало зависят от инди­видуальных особенностей людей, так как основной подсистемой, реагирующей на колебания, являются органы брюшной полости, вибрирующие в одной фазе. Резонанс внутренних органов наступает при частоте З...3,5 Гц, а при 4...8 Гц они смещаются. Если вибрация действует в горизонтальной плоскости по оси, перпендикулярной позвоночнику, то резонансная частота тела обусловлена сгибанием позвоночника и жесткостью тазобедренных суставов. Область резонанса для головы сидящего человека соответствует 20…30 Гц. В этом диапазоне амплитуда виброускорения головы может втрое превышать амплитуду колебаний плеч. Качество зрительного восприятия предметов значительно ухудшается при частоте 60…70 Гц, что соответствует резонансу глазных яблок. Исследователи Японии установили, что характер профессии определяет некоторые особенности действия вибрации. Например, у шоферов грузовых машин широко распространены желудочные заболевания, у водителей трелевочных тракторов на лесозаготовках – радикулиты, у пилотов, особенно работающих на вертолетах, наблюдается снижение остроты зрения. Нарушения нервной и сердечнососудистой деятельности у летчиков возникают в 4 раза чаще, чем у представителей других профессий. 3. Нормирование и средства оценки вибраций. Нормирование. Цель нормирования вибраций - предотвращение функциональных расстройств и заболеваний, чрезмерного утомления и снижения работоспособности. В основе гигиенического нормирования лежат медицинские показания. Нормированием устанавливают допустимую суточную или недельную дозы, предупреждающие в условиях трудовой деятельности функциональные расстройства или заболевания работающих. Для нормирования воздействия вибрации установлены четыре критерия: обеспечение комфорта, сохранение работоспособности, сохранение здоровья и обеспечение безопасности. В последнем случае используются предельно допустимые уровни для рабочих мест. Применительно к вибрациям существует техническое (распространяется на источник вибрации) и гигиеническое нормирование (определяет ПДУ вибрации на рабочих местах). Последнее ограничивает уровни вибрационной скорости и ускорения в октавных или третьоктавных полосах среднегеометрических частот. При гигиенической оценке вибраций нормируемыми параметрами являются средние квадратичные значения виброскорости (и их логарифмические уровни) или виброускорения как в пределах отдельных октав, так и третьеоктавных полос. Для локальной вибрации нормы вводят ограничения только в пределах октавных полос. Например, когда устанавливают регулярные перерывы в течение рабочей смены при локальной вибрации, допустимые значения уровня виброскорости увеличивают. При интегральной оценке по частоте нормируемым параметром является корректированное значение контролируемого параметра вибрации, измеряемое при помощи специальных фильтров. Локальную вибрацию оценивают, используя среднее за время воздействия корректированное значение. Вибрацию, воздействующую на человека, нормируют для каждого установленного направления. Гигиенические нормы вибрации при частотном (спектральном) анализе установлены для длительности воздействия 480 мин. Гигиенические нормы в логарифмических уровнях среднеквадратических значений виброскорости для общей локальной вибрации в зависимости от категории (1,2, За, б, в, г) приведены в ГОСТ 12.1.012-78; там же указаны нормы при интегральной оценке по частоте нормируемого параметра. Эти значения положены в основу норм СН 245-71 и требований в рамках ССБТ. Вибрацию классифицируют по следующим признакам: по способу воздействия на человека - общая и локальная; по источнику возникновения - транспортная (при движении машин), транспортно-технологическая (при совмещении движения с технологическим процессом, например при косьбе или обмолоте самоходным комбайном, рытье траншей экскаватором и т. п.) и технологическая (при работе стационарных машин, например насосных агрегатов); по частоте колебаний - низкочастотная (менее 22,6 Гц), среднечастотная (22,6...90 Гц) и высокочастотная (более 90 Гц); характеру спектра - узко- и широкополосная; времени действия - постоянная и непостоянная; последнюю, в свою очередь, делят на колеблющуюся во времени, прерывистую и импульсную. Нормы вибрации установлены для трех взаимно перпендикулярных направлений вдоль осей ортогональной системы координат. При измерении и оценке общей вибрации необходимо помнить, что ось X расположена в направлении от спины к груди человека, ось Y- от правого плеча к левому, ось Z- вертикально вдоль туловища. При измерении локальной вибрации следует учитывать, что ось Z нaпpaвлeнa вдоль ручного инструмента, а оси Х Y- перпендикулярно к ней. Стандартом установлены нормы отдельно для транспортной вибрации (категория 1), транспортно-технологической (категория 2) и технологической (категория 3); причем нормы для третьей категории подразделены на подкатегории: За - для вибрации, действующей на постоянных рабочих местах производственных помещений; 3б - на рабочих местах складов, бытовых, дежурных и подсобных помещений, в которых отсутствуют гене­рирующие вибрацию машины; Зв -в помещениях для работников умственного труда. Средства оценки. Вибра­ции измеряют виброметрами типов НВА-1 и ИШВ-1. Аппаратура НВА-1 в комплекте с пьезометрическими датчиками Д-19, Д-22, Д-26 позволяет определять низкочастотную виброскорость и виброускорения. Виброизмерительный комплекс представляет собой измерительный преобразователь (датчик), усилитель, полосовые фильтры и регистрирующий прибор. Контролируемые параметры - действующие значения виброскорости, ускорения или их уровней (дБ) в октавных полосах частот. Параметры вибрации определяют в том направлении, где колебательная скорость наибольшая. 4. Методы и средства защиты от вибрации. Для защиты от вибрации применяют следующие методы: снижение виброактивности машин; отстройка от резонансных частот; вибродем- пфирование; виброизоляция; виброгашение, а также индивидуальные средства защиты. Снижение виброактивности машин (уменьшение Fm) достигается изменением технологического процесса, применением машин с такими кинематическими схемами, при которых динамические процессы, вызываемые ударами, ускорениями и т. п. были бы исключены или предельно снижены, например, заменой клепки сваркой; хорошей динамической и статической балансировкой механизмов, смазкой и чистотой обработки взаимодействующих поверхностей; применением кинематических зацеплений пониженной виброактивности, например, шевронных и косозубых зубчатых колес вместо прямозубых; заменой подшипников качения на подшипники скольжения; применением конструкционных материалов с повышенным внутренним трением. Отстройка от резонансных частот заключается в изменении режимов работы машины и соответственно частоты возмущающей вибросилы; собственной частоты колебаний машины путем изменения жесткости системы с например установкой ребер жесткости или изменения массы системы (например путем закрепления на машине дополнительных масс). Вибродемпфирование - это метод снижения вибрации путем усиления в конструкции процессов трения, рассеивающих колебательную энергию в результате необратимого преобразования ее в теплоту при деформациях, возникающих в материалах, из которых изготовлена конструкция. Вибродемпфирование осуществляется нанесением на вибрирующие поверхности слоя упруговязких материалов, обладающих большими потерями на внутреннее трение,- мягких покрытий (резина, пенопласт ПХВ-9, мастика ВД17-59, мастика «Анти-вибрит») и жестких (листовые пластмассы, стеклоизол, гидроизол, листы алюминия); применением поверхностного трения (например, прилегающих друг к другу пластин, как у рессор); установкой специальных демпферов. Виброгашение (увеличение массы системы) осуществляют путем установки агрегатов на массивный фундамент. Виброгашение наиболее эффективно при средних и высоких частотах вибрации. Этот способ нашел широкое применение при установке тяжелого оборудования (молотов, прессов, вентиляторов, насосов и т. п.). Повышение жесткости системы, например путем установки ребер жесткости. Этот способ эффективен только при низких частотах вибрации. Виброизоляция заключается в уменьшении передачи колебаний от источника к защищаемому объекту при помощи устройств, помещаемых между ними. Для виброизоляции чаще всего применяют виброизолирующие опоры типа упругих прокладок, пружин или их сочетания. Эффективность виброизоляторов оценивают коэффициентом передачи КП, равным отношению амплитуды виброперемещения, виброскорости, виброускорения защищаемого объекта, или действующей на него силы к соответствующему параметру источника вибрации. Виброизоляция только в том случае снижает вибрацию, когда КП < 1. Чем меньше КП, тем эффективнее виброизоляция. Профилактические меры по защите от вибраций заключаются в уменьшении их в источнике образования и на пути распространения, а также в применении индивидуальных средств защиты, проведении санитарных и организационных мероприятий. Уменьшения вибрации в источнике возникновения достигают изменением технологического процесса с изготовлением деталей из капрона, резины, текстолита, своевременным проведением профилактических мероприятий и смазочных операций; центрированием и балансировкой деталей; уменьшением зазоров в сочленениях. Передачу колебаний на основание агрегата или конструкцию здания ослабляют посредством экранирования, что является одновременно средством борьбы и с шумом. В качестве вибропоглощающих покрытий обычно используют мастики № 579, 580, типа БД-17 и простейшие конструкции (слои рубероида, проклеенные битумом или синтетическим клеем). Если методы коллективной защиты не дают результата или их нерационально применять, то используют средства индивидуальной защиты. В качестве средств защиты от вибрации при работе с механизированным инструментом применяют антивибрационные рукавицы и специальную обувь. Антивибрационные полусапоги имеют многослойную резиновую подошву. Длительность работы с вибрирующим инструментом не должна превышать 2/3 рабочей смены. Операции распределяют между работниками так, чтобы продолжительность непрерывного действия вибрации, включая микропаузы, не превышала 15...20 мин. Рекомендуется делать перерывы на 20 мин через 1...2ч после начала смены и на 30 мин через 2 ч после обеда. Во время перерывов следует выполнять специальный комплекс гимнастических упражнений и гидропроцедуры - ванночки при температуре воды 38 °С, а также самомассаж конечностей. Если вибрация машины превышает допустимое значение, то время контакта работающего с этой машиной ограничивают. Для повышения защитных свойств организма, работоспособности и трудовой активности следует использовать специальные комплексы производственной гимнастики, витаминную профилактику (два раза в год комплекс витаминов С, В, никотиновую кислоту), спецпитание. Заключение. От неудовлетворительного состояния дел с безопасностью жизнедеятельности страна ежегодно несет большие человеческие, финансово-экономические, материальные и моральные потери. Обеспечение безопасности производства и охраны труда работников – одна из самых главных проблем национальной безопасности страны. На данный момент в нашей стране на многих предприятиях не соблюдается техника безопасности, а условия труда благоприятными не назовешь

  • 12 врпрос

  • Неионизирующие излучения. Электромагнитное загрязнение биосферы: опасность, оценка, технические средства защиты

  • Введение

  • С развитием электроэнергетики, радио- и телевизионной техники, средств связи, электронной офисной техники, специального промышленного оборудования и др. появилось большое количество искусственных источников электромагнитных полей, что обусловило интенсивное «электромагнитное загрязнение» среды обитания человека.

  • Длительное воздействие этих полей на организм человека вызывает нарушение функционального состояния центральной нервной и сердечнососудистой систем, что выражается в повышенной утомляемости, снижении качества выполнения рабочих операций, сильных болях в области сердца, изменении кровяного давления и пульса.

  • Источники ЭМП

  • Электромагнитные поля окружают нас постоянно. Однако человек различает только видимый свет, который занимает лишь узкую полоску спектра электромагнитных волн - ЭМВ. Глаз человека не различает ЭМП, длина волны которых больше или меньше длины световой волны, поэтому мы не видим излучений промышленного оборудования, радаров, радиоантенн, линий электропередач и др. Все эти устройства, как и многие другие, использующие электрическую энергию, излучают так называемые антропогенные ЭМП, которые вместе с естественными полями Земли и Космоса создают сложную и изменчивую электромагнитную обстановку.

  • По определению, электромагнитное поле - это особая форма материи, посредством которой осуществляется воздействие между электрическими заряженными частицами. Физические причины существования ЭМП связаны с тем, что изменяющееся во времени электрическое поле Е порождает магнитное поле И, а изменяющееся Н - вихревое электрическое поле. Обе компоненты Е и Н, непрерывно изменяясь, возбуждают друг друга.

  • Векторы Е и Н бегущей ЭМВ в зоне распространения всегда взаимно перпендикулярны. При распространении в проводящей среде они связаны соотношением

  • где со - частота электромагнитных колебаний; у - удельная проводимость вещества экрана; \i - магнитная проницаемость этого вещества; к - коэффициент затухания; R - расстояние от входной плоскости экрана до рассматриваемой точки.

  • ЭМП неподвижных или равномерно движущихся заряженных частиц неразрывно связано с этими частицами. При ускоренном движении заряженных частиц ЭМП «отрывается» от них и существует независимо в форме электромагнитных волн. Например, радиоволны не исчезают и при отсутствии тока в излучившей их антенне.

  • Электромагнитные волны характеризуются длиной волны к. Источник, генерирующий излучение, то есть создающий электромагнитные колебания, характеризуется частотой f. Международная классификация электромагнитных волн по частотам приведена в табл. 1.

Таблица 1. Международная классификация электромагнитных волн по частотам

  • № диапазона

  • Диапазон радиочастот

  • Границы диапазона

  • Диапазон радиоволн

  • Границы диапазона

  • 1

  • Крайне низкие, КНЧ

  • 3-30 Гц

  • Декамегаметровые

  • 100-10 мм

  • 2

  • Сверхнизкие, СНЧ

  • 30-300 Гц

  • Мегаметровые

  • 10-1 мм

  • 3

  • Инфракрасные, ИНЧ

  • 0,3-3 кГц

  • Гектокилометровые

  • 1000-100 км

  • 4

  • Очень низкие, ОНЧ

  • 3-30 кГц

  • Мириаметровые

  • 100-10 км

  • 5

  • Низкие частоты, НЧ

  • 30-300 кГц

  • Километровые

  • 10-1 км

  • 6

  • Средние, СЧ

  • 0,3-3 МГц

  • Гектометровые

  • 1-0,1 км

  • 7

  • Высокие частоты, ВЧ

  • 3-30 МГц

  • Декаметровые

  • 100-10 м

  • 8

  • Очень высокие, ОВЧ

  • 30-300 МГц

  • Метровые

  • 10-1 м

  • 9

  • Ультравысокие, УВЧ

  • 0,3-3 ГГц

  • Дециметровые

  • 1-0,1 м

  • 10

  • Сверхвысокие, СВЧ

  • 3-30 ГГц

  • Сантиметровые

  • 10-1 см

  • 11

  • Крайне высокие, КВЧ

  • 30-300 ГГц

  • Миллиметровые

  • 10-1 мм

  • 12

  • Гипервысокие, ГВЧ

  • 300-3000 ГГц

  • Децимиллиметровые

  • 1-0,1 мм

  • Особенностью ЭМП является его деление на «ближнюю» и «дальнюю» зоны. На практике в «ближней» зоне - зоне индукции на расстоянии от источника г < К ЭМП можно считать квазистатическим. Здесь оно быстро убывает с расстоянием, обратно пропорционально квадрату г2 или кубу г3 расстояния. Поле в зоне индукции служит для формирования электромагнитной волны. «Дальняя» зона - зона сформировавшейся электромагнитной волны, в которой интенсивность поля убывает обратно пропорционально расстоянию до источника г'1. Граница «ближней» и «дальней» зоны представлена на рис. 3.

Согласно теории ЭМП «ближняя» находится на расстоянии, где- длина волны и определяется из соотношения

  • , где с - скорость распространения волны, f - частота электромагнитных колебаний. «Дальняя» зона, или зона распространения находится на расстоянии.

  • В зоне индукции еще не сформировалась бегущая волна, вследствие чего Е и Н не зависят друг от друга, поэтому нормирование в этой зоне ведется как по электрической, так и по магнитной составляющей поля. Это характерно для ВЧ-диапазона. В зоне излучения ЭМП характеризуется электромагнитной волной, наиболее важным параметром которой является плотность потока мощности.

  • В «дальней» зоне излучения принимается Е = 377Н, где 377 - волновое сопротивление вакуума, Ом. В российской практике санитарно-гигиенического надзора на частотах выше 300 Мгц в «дальней» зоне излучения обычно измеряется плотность потока электромагнитной энергии или плотность потока мощности - S, Вт/м2. За рубежом ППЭ обычно измеряется для частот выше 1 ГГц. ППЭ характеризует величину энергии, теряемой системой за единицу времени вследствие излучения электромагнитных волн.

  • Природные источники ЭМП

  • Природные источники ЭМП делятся на 2 группы. Первая - поле Земли: постоянное магнитное поле. Процессы в магнитосфере вызывают колебания геомагнитного поля в широком диапазоне частот: от 10"5 до 102 Гц, амплитуда может достигать сотых долей А/м. Вторая - радиоволны, генерируемые космическими источниками. В силу относительно низкого уровня излучения от космических радиоисточников и нерегулярного характера воздействия их суммарный эффект поражения биообъектов незначителен.

  • Человеческое тело также излучает ЭМП с частотой выше 300 ГГц с плотностью потока энергии порядка 0,003 Вт/м2. Если общая площадь поверхности среднего человеческого тела 1,8 м2, то общая излучаемая энергия составляет примерно 0,0054 Вт.

  • Антропогенные источники ЭМП

  • Антропогенные источники ЭМП в соответствии с международной классификацией также делятся на 2 группы. Первая - источники, генерирующие крайне низкие и сверхнизкие частоты от 0 Гц до 3 кГц. Вторая - источники, генерирующие от 3 кГц до 300 ГГц, включая микроволны в диапазоне от 300 МГц до 300 ГГц.

  • К первой группе относятся в первую очередь все системы производства, передачи и распределения электроэнергии.

  • Источником электрических полей промышленной частоты являются, например, токоведущие части действующих электроустановок: линии электропередач, трансформаторные подстанции, электростанции, индукторы, конденсаторы термических установок, фидерные линии, генераторы, трансформаторы, электромагниты, соленоиды, электро- и кабельная проводки, металлокерамические магниты, офисная электро- и электронная техника, транспорт на электроприводе и др. В различных технологиях электромагнитная энергия высокочастотного и сверхвысокочастотного диапазонов в основном используется для процессов электротермии, то есть для нагрева материала в самом ЭМП. Данное направление является перспективным, так как оно обеспечивает большие скорости и качество обработки материалов, экологически и экономически эффективно. Это объясняется тем, что в ЭМП разогрев материала на атомном и молекулярном уровнях происходит во всем объеме сразу за счет электрических потерь, в то время как температура окружающей среды остается практически без изменения.

  • Вторую группу составляют функциональные передатчики, различное технологическое оборудование, использующее СВЧ-излучение, переменные и импульсные магнитные поля, медицинские терапевтические и диагностические установки, бытовое оборудование, средства визуального отображения информации на электронно-лучевых трубках.

  • Нормирование ЭМП

  • Применение новых технологических процессов и радиоэлектронных систем и устройств, излучающих электромагнитную энергию в окружающую среду, создает и ряд трудностей, связанных с отрицательным воздействием ЭМИ на организм человека. Установлено, что этот вид энергии воздействует на весь организм в целом, вызывая его перегрев под влиянием переменного поля, а также отрицательно влияет и на отдельные системы организма. Данные об условиях облучения на рабочих местах некоторых специальностей приведены в табл. 2.

  • Таблица 2. Интенсивность ЭМИ на рабочих местах ряда специальностей

    • Производственный процесс

    • Основные источники излучения

    • Интенсивность облучения персонала, мкВт/см2

    • Регулировка, настройка и испытание комплекса РЛС в выпускных цехах заводов и ремонтных мастерских

    • Антенные системы

    • 1000 и более

    • Регулировка, настройка и испытание комплекса РЛС в условиях полигона

    • Антенные системы

    • 500 и более

    • Регулировка, настройка и испытание отдельных СВЧ-узлов, блоков и приборов

    • Катодные выводы маг-нетрона, волноводо-коак-сиальные переходы и др.

    • до 1000

    • Научно-исследовательские работы

    • Антенные устройства, генераторные блоки, СВЧ-приборы и др.

    • до 1000

    • Эксплуатация РЛС на аэ-родромах гражданской авиа-ции

    • Антенные системы

    • 100-1000

    • Эксплуатация СВЧ-аппа-ратов в некоторых областях народного хозяйства, в том числе физиотерапевтические кабинеты

    • Разные антенные сис-темы, генераторные бло-ки, излучатели и др.

    • 1-2000

    • Контрольно-измерительные работы в экранированных по-мещениях

    • Генераторные блоки, разные антенные систе-мы

    • 5-50 (сложные ЭМП)

  • Нормирование ЭМИ проводится в соответствии с нормативными документами и справочными данными. В табл. 3 приведены значения допустимой напряженности Е и Н и энергетической нагрузки электромагнитного поля на рабочих местах и в местах возможного нахождения персонала, связанного профессиональное воздействием ЭМП. Указанные значения не должны превышаться в течение рабочего дня.

  • Так, напряженность ЭМП радиочастот на рабочих местах не должна превышать по электрической составляющей 20 В/м в диапазоне частот 100 кГц - 30 МГц и при f = 30-300 МГц; по магнитной составляющей предельная напряженность Нпред = 5 А/м при f = 100 кГц - 1,5 МГц. В диапазоне СВЧ f = 300-300000 МГц допустимая плотность потока мощности при длительности облучения т0бл в течение всего рабочего дня составляет 10 мкВт/см2; при 50бл = 2 ч - 100 мкВт/см2; при т0бл = 15-20 мин - 1000 мкВт/см2.

  • Таблица 3. т непредельно допустимые уровни напряженности и энергетической нафузки ЭМП, мкВт/см2

    • Диапазон частот, МГц

    • Допустимая напряженность поля

    • Нормативная энергети-ческая нагрузка, Втч/м2 (мкВтч/см2)

    • Дополнения

    • электричес-кая, Вт/м

    • магнитная, А/м

    • 6х10'2-3 3-30 30-50 50-300 6х10"2-1,5 30-50

    • 50 20 10 5

    • 5

    • 0,3

    • --

    • Допускается превыше-ние уровней в два раза при времени воздействия не более 0,5 рабочего дня

    • 2 (200)

    • Кроме случаев облуче-ния от вращающихся и сканирующих антенн.

    • 300-3x1О5

    • 20 (2000)

    • Облучение от вращаю-щихся и сканирующих ан-тенн с частотой 1 Гц и скважностью не менее 50.

    • 20 (2000)

    • Последовательное или одновременное облуче-ние в непрерывном или прерывистом (от вра-щающихся и сканирующих антенн) режимах.

  • В остальное рабочее время интенсивность облучения не должна превышать 10 мк Вт/см2.

  • В случае непрерывного облучения от вращающихся и сканирующих ан-тенн ПДУ облучения составляет 100 мкВт/см2 при воздействии в течение 8 часов и 1000 мкВт/см2 при облучении до 2 ч/сут.

  • Для лиц, профессионально не связанных с облучением, и для населе-ния в целом ППМ не должен превышать 1 мкВт/см2.

  • Основные виды средств коллективной и индивидуальной защиты от ЭМП

  • В зависимости от условий воздействия ЭМП, характера и местонахож-дения источника излучения могут быть использованы следующие способы и методы защиты: защита временем и расстоянием, снижение интенсивности излучения источника, экранирование источника, защита рабочего места от излучения, применение средств индивидуальной защиты.

  • Защита временем

  • Способ применяется в тех случаях, когда отсутствует возможность уменьшить напряженность ЭМП до ПДУ. Допустимое время определяется как

  • где th1,2 - гиперболический тангенс.

  • Защита расстоянием. Способ используется, если нельзя снизить интенсивность облучения другими методами. Является наиболее эффективным.

  • Для диапазона ДВ, СВ, KB и УКВ расстояние определяется как

  • где р - средняя выходная мощность, Вт; G - коэффициент направленности антенны; Едоп,_ допустимая напряженность электрического поля, В/м.

  • Для диапазона СВЧ

  • Метод уменьшения мощности излучения

  • Осуществляется непосредственной регулировкой передатчика; его заменой на менее мощный применением специальных устройств - аттенюаторов, которые поглощают, отражают или ослабляют передаваемую энергию на пути от генератора к антенне.

  • Способы экранирования источника

  • Основными видами средств коллективной защиты являются экранирующие устройства - составные части электрической установки, предназначенные для защиты персонала в открытых распределительных устройствах и на воздушных линиях электропередач.

  • Конструктивно экранирующие устройства оформляются в виде козырьков, навесов или перегородок из металлических канатов, прутков, сеток или пластин из резины. Экранирующие устройства должны иметь антикоррозионное покрытие и быть заземлены.

  • Экраны бывают поглощающие или отражающие электромагнитную энергию. Выбор конструкции экранов зависит от характера технологического процесса, мощности источника и диапазона волн. Коэффициент экранирования равен

  • гдеили- эффективность экранирования; Е и Н - без крана; ЕэиНэ-с экраном.

  • Наряду со стационарными и переносными экранирующими устройствами применяют индивидуальные экранирующие комплекты. В состав экранирующих комплектов входят: спецодежда из металлизированной ткани, средства защиты головы, рук и лица.

  • Безопасность лазерного излучения

  • Особое место среди источников ЭМИ занимают лазерные установки. В промышленности применяются лазерные установки, работающие в диапазонах длин волн от ИК до рентгеновского. Лазерная технология, например, обработка материалов лазерным излучением, позволяет осуществлять сварку материалов, сверление, резку и т.д.

  • Благодаря своим уникальным свойствам, эти устройства также широко используются в научных исследованиях: в физике, химии, биологии и др. и в практической медицине: хирургия, офтальмология и др.

  • Лазер - это генератор электромагнитного излучения оптического диапазона, основанный на использовании вынужденного излучения. В нем происходит преобразование различных видов энергии в энергию лазерного излучения. Плотность мощности излучения лазерных установок достигает 1011-1014 Вт/см2, а для испарения большинства материалов достаточно 10э Вт/см2. Для сравнения: плотность солнечного излучения 0,15-0,25 Вт/см2. Поэтому серьезную опасность представляет не только прямое, но и диффузионно отраженное лазерное излучение. Проявляются и сопутствующие факторы: ЭМП, высокое напряжение, аэрозоли от возгона веществ в зоне действия луча.

  • Существуют газовые лазеры, жидкостные и твердотельные, которые в свою очередь делятся на непрерывного и импульсного действия. Классификация лазеров по степени опасности генерируемого излучения, требования к конструкции лазерных установок и технологическим процессам с использованием таких установок приведены в.

  • В основу классификации лазеров положена степень опасности лазерного излучения для обслуживающего персонала:

  • класс I - выходное излучение не опасно для глаз;

  • класс II - опасно для глаз прямое или зеркально отраженное излучение;

  • класс III - опасно для глаз прямое, зеркально, а также диффузионно отраженное излучение на расстоянии 10 см от отражающей поверхности и для кожи прямое или зеркально отраженное излучение;

  • класс IV - опасно для кожи диффузионно отраженное излучение на расстоянии 10 см от отражающей поверхности.

  • Биологические эффекты от действия луча лазера на живые ткани заключаются в термическом, энергетическом, фотохимическом и механическом воздействии, а также электрострикции и образовании в пределах клетки микроволнового ЭМП. Эти воздействия нарушают жизнедеятельность как отдельных органов, так и организма в целом. Выделяют два механизма: первичный и вторичный. Первичный механизм проявляется в виде органических изменений в облучаемых тканях. Вторичный механизм проявляется как реакция организма на облучение.

  • В качестве приоритетных критериев при оценке степени опасности генерируемого лазерного излучения приняты: энергия или мощность излучения, плотность энергии излучения, длительность воздействия излучения и длина волны.

  • Предельно допустимые уровни, требования к устройству, размещению и безопасной эксплуатации лазеров позволяют разрабатывать мероприятия по обеспечению безопасных условий труда при работе с ними. Санитарные нормы и правила определяют величины ПДУ для каждого режима работы, участка оптического диапазона по специальным формулам и таблицам.

  • Таблица 4. А ПДУ лазерного излучения [6]

    • Длина волны, мкм

    • ПДУ, Дж-см"2

    • 0,200-0,210

    • 1х108

    • 0,210-0,215

    • 1х10*7

    • 0,215-0,290

    • 1х10"6

    • 0,290-0,300

    • 1x10"5

    • 0,300-0,370

    • 1x10^

    • Св. 0,370

    • 2x10"3

  • Нормируется энергетическая экспозиция облучаемых тканей.

  • Например, значения ПДУ энергетической экспозиции при облучении ультрафиолетовой областью спектра приводятся в та б л. 4.

  • Предупреждение поражений лазерным излучением включает систему мер инженерно-технического, планировочного, организационного и санитарно-гигиенического характера.

  • При использовании лазеров 11-111 классов в целях исключения облучения персонала необходимо ограждение лазерной зоны или экранирование пучка излучения. Экраны и ограждения должны быть огнестойкими, не выделять токсичных веществ при нагреве и изготовлены из материалов с наименьшим коэффициентом отражения. Лазеры IV класса опасности размещаются в отдельных изолированных помещениях и обеспечиваются дистанционным управлением. При размещении в одном помещении нескольких лазеров следует исключить возможность взаимного облучения операторов, работающих на аналогичных установках.

  • Для удаления возможных токсичных газов, паров и пыли оборудуется приточно-вытяжная вентиляция. Для защиты от шума применяется звукоизоляция установок, звукопоглощение и др.

  • В качестве индивидуальных средств защиты используют очки со специальными стеклами - фильтрами, щитки, маски, халаты светло-зеленого или голубого цветов.

  • Контроль уровней лазерного излучения производится в основном фотоэлектрическими приборами, например, «Измеритель-1» и ИЛД-2.

  • 13 вопрос!!!

  • Название: Ионизирующие поля и излучения Раздел: Рефераты по безопасности жизнедеятельности Тип: курсовая работа Добавлен 17:32:18 31 июля 2009 Похожие работы Просмотров: 54 Комментариев: 0 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

  • Ионизирующие поля и излучения: опасность, оценка, технические средства защиты. Безопасные технологии

  • Электростатические поля и загрязнение биосферы

  • Статическое электричество - это процесс образования, сохранения и разделения свободного электрического заряда на поверхности и в объеме диэлектрических и полупроводниковых веществ и материалов или на изолированных проводниках.

  • Экспериментально установлено, что положительные заряды скапливаются на поверхности того из двух соприкасающихся веществ, диэлектрическая проницаемость которого больше. Если соприкасающиеся вещества имеют одинаковую диэлектрическую проницаемость, то электрические заряды не возникают.

  • При статической электризации напряжение относительно Земли достигает десятков, а иногда и сотен тысяч вольт. Значения токов при явлениях статической электризации составляют доли ампера.

  • Явление статической электризации наблюдается в следующих основных случаях: в потоке и при разбрызгивании жидкостей; в струе газа или пара; при соприкосновении и последующем разделении двух твердых разнородных тел. Эти случаи являются базовыми для таких технологических процессов, как сушка в кипящем слое, пневмосушка и пневмотранспорт газов, паров и пыли, размол, дробление и рассев, слив, налив, перекачка, размешивание и фильтрование электризующихся жидкостей, подача мономеров и легковоспламеняющихся жидкостей в полимеризаторы и др. Опасность возникновения статического электричества проявляется в возможности образования электрической искры и вредном действии его на организм человека, причем не только при непосредственном контакте с зарядом, но и за счет действия электрического поля Е, возникающего вокруг заряженных поверхностей. У людей, работающих в зоне воздействия электростатического поля, встречаются разнообразные жалобы: на раздражительность, головную боль, нарушение сна, снижение аппетита и др. Легкие «уколы» и «пощипывания» при работе с сильно наэлектризованными материалами негативно влияют на психику рабочих, а в определенных ситуациях могут вызвать шоковое состояние. При постоянном прохождении через тело человека малых токов электризации возможны неблагоприятные физиологические изменения в организме, приводящие к профзаболеваниям.

  • Вследствие этого в соответствии с введены допустимые уровни напряженности электростатических полей Епред,- Данный уровень устанавливается равным 60 кВ/м в течение 1 ч. Для Е < 20 кВ/м время пребывания в электростатических полях не регламентируется. Для Е = 20-60 кВ/м допустимое время пребывания персонала в электростатическом поле без средств защиты зависит от конкретного уровня напряженности на рабочем месте и определяется по формуле:

  • где Ефакт - фактическое значение напряженности поля, кВ/м.

  • Основная величина, характеризующая способность различных материалов проводить ток, а также определяющая их способность к электризации

  • - удельное электрическое сопротивление р.

  • В соответствии с все вещества и материалы в зависимости от величины р подразделяются на диэлектрические, антистатические и электропроводящие. В соответствии с этими Правилами pv и р5 должны указываться в технологическом регламенте, а также в исходных данных при проектировании любого технологического процесса. Для практических целей необходимо брать их максимальные значения или определять экспериментально для каждого конкретного продукта.

  • Меры защиты от статического электричества направлены на предупреждение возникновения и накопления зарядов статического электричества, создание условий рассеивания зарядов и устранение опасности их вредного воздействия.

  • Основные методы и средства защиты от статического электричества представлены на р и с. 1.

  • Радиационное излучение и загрязнение биосферы

  • Введение в радиоэкологию

  • Среди опасностей, угрожающих человеку, особо необходимо выделить ионизирующую радиацию, в частности, техногенную составляющую. Главными источниками ионизирующих излучений и радиоактивного загрязнения являются предприятия ядерного топливного цикла: атомные станции; предприятия по изготовлению ядерного топлива; предприятия по переработке и захоронению радиоактивных отходов; исследовательские ядерные реакторы, транспортные ядернохимические установки и военные объекты. Сведений о влиянии радиоактивных осадков на биологические объекты пока недостаточно. Особенно много дискуссий и акций протеста возникает по поводу атомной энергетики. Обеспокоенность населения резко обострилась после аварии на Чернобыльской АЭС.

  • Приводятся аргументы в пользу замедления или приостановления развития ядерной энергетики на том основании, что на период до начала массового использования термоядерных реакторов хватит источников обычного топлива. Термоядерные реакторы относят при этом к более экологически чистым системам, чем ЯЭУ - ядерные энергетические установки.

  • Однако только атомная энергетика может дать реальный выход из энерго-экологического тупика, возникающего при использовании основных источников энергии: парниковый эффект, увеличение среднегодовой температуры на Земле, потребление кислорода из атмосферы и др. При делении ядерного горючего 80% образующейся энергии превращается в тепло, а 20% выделяется в виде радиоактивных излучений. Это радиоактивные изотопы в воде, продукты коррозии, осколки деления урана от цинка до гадолиния.

  • Действительно, ядерное топливо при горении не потребляет кислород, а выделение углекислого газа происходит в небольших количествах на предприятиях при производстве урана. Следовательно, не происходит усиления парникового эффекта в атмосфере и заметных климатических изменений. Технология производства тепла и электроэнергии из ядерного топлива хорошо разработана и экономически конкурентоспособна по сравнению с технологиями на ископаемом топливе. Уникальной особенностью ядерного топлива является возможность его воспроизводства, то есть искусственная наработка нового ядерного топлива в реакторе. Ядерные электростанции в нормальном режиме производства электроэнергии обеспечивают наибольшую экологическую чистоту. В то же время они могут представлять огромную опасность для окружающей среды в случае тяжелых аварий. Таким образом, ставится задача создания таких систем, которые не допускали бы возникновения тяжелых аварий и локализовали бы внутри аппарата последствия менее серьезных аварий. В свою очередь, все это заставляет разрабатывать новые конструкционные материалы и топливные композиции или искать технические решения для расширения рабочих температурных интервалов существующих.

  • В отличие от других способов получения энергии в процессе работы ЯЭУ остаются экологически более опасные отходы в виде выгоревшего топлива с высокой долгоживущей радиоактивностью. Отсюда вытекают задачи по оптимизации топливного цикла ЯЭУ, способов переработки облученного топлива и обращения с полученными при этом радиоактивными отходами.

  • О механизме излучений

  • Согласно определениям атомной физики и радиоэкологии, атомы, имеющие ядра с одинаковым числом протонов, но различающиеся по числу нейтронов, относятся к разновидностям одного и того же химического элемента и называются изотопами. Ядра всех изотопов образуют группу «нуклидов». Большинство нуклидов нестабильны, они все время превращаются в другие нуклиды. Сложные процессы, происходящие внутри атома, сопровождаются высвобождением энергии в виде излучения. Процесс самопроизвольного распада нуклида называется радиоактивным распадом, а сам такой нуклид - радионуклидом. Ионизирующее излучение делится на корпускулярное или фотонное.

  • Испускание ядром двух протонов и двух нейтронов - это а-излучение, испускание электронами -. Иными словами, а-частицы представляют собой поток ядер гелия. Их энергия лежит в пределах 3-9 МэВ. Пробег такой частицы в воздухе 8-9 см, а в мягких биологических тканях - десятки микронов, р-частицы - это поток электронов или позитронов, возникающих при радиоактивном распаде. Их энергия находится в диапазоне 0,0005-3,5 МэВ. Ионизирующая способность ниже, а проникающая - выше, чем у а-частиц. Максимальный пробег в воздухе - 1,8 м, в тканях - 2,5 см. Гамма-лучи - результат высокочастотного электромагнитного излучения, возникающего в процессе ядерного распада. Эти лучи обладают большой проникающей способностью и малым ионизирующим действием. Энергия их лежит в пределах 0,01-3 МэВ.

  • Вышеуказанные излучения, таким образом, характеризуются ионизирующей и проникающей способностью. Эти свойства и определяют их воздействие на биологические объекты.

  • Действие радиации на человека

  • Биологическое действие ионизирующего излучения заключается в том, что поглощенная энергия расходуется на разрыв химических связей и разрушение клеток живой ткани. Облучение кожи в зависимости от величины дозы вызывает разной степени ожоги, а также может наносить серьезные отдаленные последствия: перерождение кровеносных сосудов, возникновение хронических язв и раковых опухолей со смертельным исходом через 6-30 лет. Смертельная доза у-излучения считается равной 600±100 Р. Так называемая смерть под лучом наступает при дозе около 200000 Р. Доказано, что облучение может иметь генетические последствия, вызывать мутации. При дозах внешнего облучения не более 25 бэр никаких изменений в организмах и тканях человека не наблюдается.

  • Некоторые сведения об эффектах внешнего воздействия ионизирующих излучений приведены в табл.

    • Условия облучения

    • Доза (накопленная) или мощность дозы

    • Эффект

    • Однократное острое, пролонгированное, дробное, хроническое - все виды

    • Любая доза, отличная отО

    • Увеличение риска отдаленных последствий и генетических нарушений

    • Хроническое в течение ряда лет

    • 0,1 Зв (10 бэр) в год и более

    • Снижение неспецифической резистентности организма

    • 0,5 Зв (50 бэр) в год и более

    • Специфические проявления лучевого воздействия, снижение иммунореактивности, катаракта (при дозах более 30 бэр)

    • Острое однократное

    • 1,0 Зв (100 бэр) и более

    • Острая лучевая болезнь разной степени тяжести

    • 4,5 Зв (450 бэр) и более

    • Острая лучевая болезнь со смертельным исходом у 50% облученных

    • Пролонгированное, 1-2 месяца, на щитовидную железу

    • 10,0 Зв (1000 бэр) и более

    • Гипофункция щитовидной железы, возрастание риска развития опухолей (аденом и рака) с вероятностью около 1x10"2

  • При внутреннем облучении опасны все виды излучения, так как действуют непрерывно и практически на все органы.

  • Внутреннее облучение вызывается источниками, входящими в состав организма или попавшими в него с воздухом, водой или пищей, во много раз опаснее, чем внешнее, при тех же количествах радионуклидов, так как:

  • Время облучения увеличивается и совпадает со временем пребывания радиоактивного вещества в организме; такие вещества, как 226Ra или 239Ри, из организма практически не выводятся, и облучение длится всю жизнь.

  • Доза облучения резко возрастает из-за бесконечно малого расстояния до ионизируемой ткани.

  • Отсутствует защитное действие кожного покрова; а-частицы из полностью безопасных при внешнем облучении становятся наиболее опасными.

  • Нельзя использовать методы защиты, разработанные для внешнего облучения.

  • При внешнем облучении а- и р-частицы из-за малой проникающей способности вызывают в основном поражения кожи, у-иэлучение может вызвать гибель организма при отсутствии внешних изменений кожных покровов.

  • Оценка и нормирование радиоактивного излучения

  • Для количественной оценки облучения населения и производственного персонала существуют следующие величины: активность радиоактивного вещества, поглощенная доза, эквивалентная доза, эффективная ожидаемая доза, эффективная доза, коллективная эффективная доза.

  • В соответствии с все население делится на 2 категории: 1. Персонал, непосредственно работающий с источниками излучения; 2. Все население.

  • Персонал в свою очередь делится на 2 группы: А - работающие с источниками излучения и Б - по условиям работы находящиеся в сфере их воздействия.

  • Для каждой категории облучаемых лиц установлено 3 класса нормативов: основные дозовые пределы, допустимые уровни и контрольные уровни.

  • Нормируемые величины

  • Дозовые пределы, мЗв

  • Персонал (группа А)

  • Население

  • Эффективная доза

  • 20 мЗв/год в среднем за любые последовательные 5 лет, но не более 50 мЗв/год

  • 1 мЗв/год в среднем за любые последовательные 5 лет, но не более 5 мЗв/год

  • Эквивалентная доза за год в:

  • хрусталике

  • 150

  • 15

  • коже

  • 500

  • 50

  • кистях и стопах

  • 500

  • 50

  • Превышение допустимых и контрольных уровней является порогом ухудшения радиационной обстановки и сигналом к принятию соответствующих мер безопасности.

  • Расчетные уровни индивидуального радиационного риска, соответствующие установленным нормами радиационной безопасности пределам доз облучения, представлены в т а б л. 4.

  • Уровни индивидуального радиационного риска, соответствующие установленным пределам доз

  • Категория лиц, подвергающихся облучению

  • Уровень дозы

  • Риск соматико-стохастических последствий в год

  • Риск генетических последствий

  • в год

  • Общий риск в год

  • Персонал

  • Предел дозы, 0,05 Зв

  • 6,25x10"4

  • 2x10^

  • 8.25Х10"4

  • Средняя доза при установленном пределе, 0,005 Зв

  • 6,25x10"5

  • 2x10'5

  • 8,25x10"5

  • Отдельные лица из населения

  • Предел дозы, 0,005 Зв

  • 6,25x10"5

  • 2x10"5

  • 8,25x1 О*5

  • Средняя доза при установленном пределе, 0,0005 Зв

  • 6,25x10"6

  • 2Х10-6

  • 8,25x1 О*6

  • При сочетании внешнего, внутреннего облучения и поступления нескольких радионуклидов в организм должно выполняться условие безопасности

  • где Д31 - эквивалентная доза /-го излучения на данный орган; /7, - поступление у-го радионуклида; ПДД принято использовать следующие параметры:

  • -  плотность радиоактивного загрязнения почвы по отдельным радионуклидам:13 Cs, 90Sr и Pu;

  • -  мощность экспозиционной дозы на расстоянии 1 м от поверхности почвы;

  • -  эффективная эквивалентная годовая доза облучения населения.

  • В та б л. 5 представлены критерии экологического состояния радиоактивно загрязненной территории, определенные, исходя из вышеназванных параметров.

    • Параметры

    • Экологическое состояние

    • Экологическое бедствие

    • Чрезвычайная экологическая ситуация

    • Удовлетвори­тельная ситуация

    • 1

    • Мощность экспозиционной дозы на уровне 1 м от поверх­ности почвы, мкР/час

    • Более 400

    • 200^00

    • До 20

    • 2

    • Радиоакгивное загрязне­ние, Ки/км2 137Cs 90Sr

    • Pu (сумма изотопов)

    • Более 40 Более 3

    • 15-40 1-3 Более 0,1

    • До1 До 0,3

    • 3

    • Эффективная доза облу­чения, мЗв/год

    • Более 10

    • 5-10

    • Менее 1

  • Для обнаружения ионизирующих излучений, измерения их энергии и других свойств применяются дозиметрические приборы.

  • Защита от излучения

  • Основные методы в производственном цикле: защита расстоянием, защита временем, защита экранированием источника излучения и защита количеством. «Защита расстоянием» основана на том, что интенсивность облучения уменьшается пропорционально квадрату расстояния между источником излучения и работающим. «Защита временем» заключается в уменьшении продолжительности контакта человека с источником излучения. «Защита экранированием» - укрытие источника излучения конструкционными материалами, хорошо поглощающими излучение: свинец, железо, бетон, бор- или свинецсодержащее стекло и др. «Защита количеством» заключается в уменьшении мощности источников до минимальных величин.

  • Безопасные ресурсосберегающие технологии

  • Для широкого внедрения атомной энергетики необходимо решить две технические проблемы: разработать реактор с повышенной безопасностью и технологию удаления опасных высокоактивных отходов, отвечающую требованиям промышленной экологии.

  • Только для производства электроэнергии используется несколько различных типов реакторов, которые можно классифицировать на две большие группы: реакторы на тепловых и на быстрых нейтронах. На рис. 2 представлены упрощенные схемы реакторов различного типа.

  • В качестве топлива в атомной станции может использоваться ряд элементов, основным из которых в настоящее время является уран. Существует три основных способа разработки урановых месторождений: подземный, открытый и наиболее современный способ подземного выщелачивания. В качестве выщелачивающего реагента применяют растворы серной кислоты и карбонат - бикарбонатных солей, насыщенных кислородом. Растворы закачивают в рудоносные пласты, растворяют там уран, и полученный раствор солей урана извлекают на поверхность. Далее руду или растворы урана перерабатывают на специальных гидрометаллургических предприятиях в продукт, называемый «желтый кек», представляющий собой концентрат солей урана желтого цвета, содержащий около 80% U308. Концентрат урана очищают и переводят путем конверсии в легколетучее соединение - гексафторид урана. Известно пять основных методов разделения изотопов урана: газодиффузионный, центрифужный, аэродинамический, химический и лазерный.

  • На рис. 3 показана схема ядерного топливного цикла, а на рис. 4 - общая схема образования и обезвреживания радиоактивных отходов. РАО бывают твердыми, жидкими и газообразными. По содержанию в них радионуклидов и уровню тепловыделения их подразделяют на низкоактивные, среднеактивные и высокоактивные.

  • Большее количество отходов относится к классу НАО, образующихся в основном при добыче и переработке урановых руд. Присутствующие продукты распада урана делают радиоактивными шахтные воды, рудные отвалы и отвалы горных пород. Для устранения пылеобразования проводится распыление воды или пылевяжущих растворов. Во избежание загрязнения грунтовых вод все стоки собираются и перекачиваются на участки обработки отходов. Наиболее интенсивно в окружающую среду проникают газообразный радон и легкорастворимые соединения радия. В связи с этим вокруг площадок с отвалами создают санитарно-защитные зоны. Твердые отходы прессуют. Жидкие - осаждают, концентрируют на ионообменных смолах или выпаривают. Загрязненные радионуклидами потоки воды пропускают через деминерализаторы для достижения уровня чистоты питьевой воды. Газообразные отходы пропускают через угольные или другие фильтры и удаляют под соответствующим контролем через высокую вентиляционную трубу. Горючие отходы сжигают с обязательным улавливанием радиоактивных газов и концентрации на сорбентах. Затем отходы кондиционируют методами цементирования и битумирования. Основной недостаток цементирования - низкая прочность готовых к захоронению или транспортировке блоков и невысокая устойчивость к влияниям погоды и к выщелачивающему действию воды. Битумирование - это более дорогостоящий процесс по сравнению с цементированием.

  • К ВАО относятся продукты деления урана, накапливающиеся в топливе. Их количество составляет менее 1%, а радиоактивность - 98% всей радиоактивности, образующийся в атомной промышленности. К категории ВАО относится выгруженное из реактора отработанное топливо и отходы, образующиеся на первых ступенях экстракции урана и плутония. Растворы последних упаривают и сливают в емкость для временного хранения. Топливо хранится на площадках АЭС. Для подготовки к долговременному хранению или окончательному удалению ВАО подвергают остекловыванию: упаренные растворы прокаливают и подвергают обработке расплавами фосфатных или боросиликатных стекол. Такая форма обезвреживания токсикантов обеспечивают полную безопасность, так как большая часть радионуклидов ВАО распадается в течение 300 лет. Для окончательного удаления НАО и САО предполагается строительство подземных специальных хранилищ, разрабатываются методы хранения в пустотах горных пород или выработанных шахт.

  • Для окончательного удаления ВАО предложен метод трансмутации радионуклидов, заключающийся в переводе радионуклидов в стабильные нуклиды под действием р-излучения или потока нейтронов. Путь удаления ВАО в космос не является радикальным, так как существует опасность непредвиденного возвращения на Землю ракеты - носителя. Наиболее приемлемым способом является удаление ВАО в глубокие геологические формации. Такое хранилище должно состоять из наземной и подземной частей. Наземная часть имеет центральную зону со вспомогательными постройками. Подземная часть хранилища напоминает большую шахту, расположенную на глубине 600-1200 м. Для предотвращения миграции радионуклидов предполагается создание технических барьеров с целью обеспечения защиты в течение различных временных интервалов: начальный период; тепловой период; период геологического контроля - в миллионы лет для обезвреживания актиноидов. Конструкция хранилища представлена на р и с. 5.

  • Таким образом, особое внимание должно уделяться сбору, удалению и захоронению твердых и высокоактивных жидких отходов, которые могут вызвать загрязнение окружающей природной среды.

  • Следует также помнить, что вокруг АЭС устанавливаются три зоны с различным по строгости режимом: контролируемая - возможно облучение свыше 0,3 дозы, допустимой для персонала; санитарно-защитная - запрещено размещение производственных, жилых и культурно-бытовых объектов, не относящихся к объекту; наблюдаемая - дозы облучения населения, проживающего в ее пределах, могут несколько превышать допустимые нормативы. Ширина зон устанавливается 3, 13 и 30 км соответственно.

  • Конец формы

  • Работы, похожие на Курсовая работа: Ионизирующие поля и излучения

    • Природа опасности

    • 1. Опасности, их природа и характеристика 1.1 Определение опасности Опасность - центральное понятие как сферы безопасности жизнедеятельности, так и ... Возникновение их возможно на радиционно опасных объектах (РОО), среди которых: атомные станции; предприятия по изготовлению и переработке ядерного топлива, захоронению ... Каждая зона характеризуется мощностью дозы излучения - Рди и дозой излучения за период полного распада (ипр) радиоактивного вещества при ядерном взрыве - Дипр или дозой излучения ...

    • Раздел: Рефераты по безопасности жизнедеятельности Тип: дипломная работа Просмотров: 1878 Комментариев: 1 Похожие работы Оценило: 1 человек Средний балл: 5 Оценка: неизвестно     Скачать

    • Ответы к экзаменационным билетам по физике 11 класс (ответы к 29 ...

    • Билет №1 Механическое движение - это изменение положения тела в пространстве с течением времени относительно других тел. Из всех многообразных форм ... Потоки гамма- квантов и нейтронов -наиболее проникающие виды ионизирующих излучений, поэтому при веншнем облучении они представляют для человека наиб опасность.Поглощенная доза ... Проблемы ядерной энергетики: проблема захоронения и переработки ядерных отходов, аварии на АЭС, но АЭС не представляют опасности ядерного взрыва и почти не загрязняют окружающую ...

    • Раздел: Рефераты по физике Тип: реферат Просмотров: 10236 Комментариев: 10 Похожие работы Оценило: 28 человек Средний балл: 3.8 Оценка: 4     Скачать

    • 90 шпаргалок по БЖД 1 курс (1-2 семестр)

    • 1.Содержание дисциплины "БЖД" ее цели и задачи: Безопасность жизнедеятельности представляет собой область научных знаний, охватывающих теорию и ... За 1 бэр принимается такая поглощенная доза любого вида ионизирующего излучения, которая при хроническом облучении вызывает такой же биологические эффект, что и 1 рад ... Мощность доз излучения на местности в сотни, а то и тысячи раз меньше, чем на следе радиоактивного облака ядерного взрыва.

    • Раздел: Рефераты по безопасности жизнедеятельности Тип: шпаргалка Просмотров: 9855 Комментариев: 8 Похожие работы Оценило: 15 человек Средний балл: 3.1 Оценка: 3     Скачать

    • Безопасность жизнедеятельности

    • Содержание Содержание. 1 Предисловие. 4 ВВЕДЕНИЕ. 6 ОСНОВЫ БЕЗОПАСНОСТИ ЖИЗНЕДЕЯТЕЛЬНОСТИ. ОСНОВНЫЕ ПОНЯТИЯ, ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ.. 6 Раздел I ... Основные дозовые пределы облучения лиц из персонала и населения не включают в себя дозы от природных и медицинских источников ионизирующего излучения, а также дозу вследствие ... категория Б облучаемых лиц. или ограниченная часть населения -лица, которые не работают непосредственно с источниками ионизирующего излучения, но по условиям проживания или ...

    • Методы обнаружения и измерения радиоактивного излучения радия и тория

    • Министерство образования Республики Беларусь УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ "БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ" Факультет технологии ... ... гигиены, ядерной метеорологии и др., всесторонне исследующих закономерности поведения во внешней среде радионуклидов и действия ионизирующих излучений на объекты окружающей среды и ... 75. Отчет о дозах облучения персонала в условиях нормальной эксплуатации техногенных источников ионизирующих излучений.

    • Основные параметры безопасности жизнедеятельности

    • 1. Роль и содержание дисциплины "Безопасность жизнедеятельности" Задача безопасности жизнедеятельности состоит в обеспечении нормальных (комфортных ... ЯТЦ включает предприятия по добыче урана (урановые рудники), его обогащению (обогатительные фабрики), изготовлению топливных элементов, сами АЭС, предприятия вторичной переработки ... Основные дозовые пределы облучения персонала и населения, указанные в таблице, не включают в себя дозы от природных и медицинских источников ионизирующего излучения, а также дозы ...

    • Проблема влияния неблагоприятных природных факторов на здоровье ...

    • СОДЕРЖАНИЕ Введение Глава 1. Анализ проблемы влияния неблагоприятных природных факторов на здоровье населения в психолого-педагогической литературе 1 ... Вредные факторы: запыленность и загазованность воздуха; шум; вибрации; электромагнитные поля; ионизирующие излучения; повышенные и пониженные атмосферные параметры (температура ... Радионуклиды земного происхождения появились с момента образования Земли и представлены радиоактивными семействами урана, радия, тория.

    • Ядерная безопасность в постсоветском Казахстане

    • СОДЕРЖАНИЕ ВВЕДЕНИЕ 1. МЕТОДИЧЕСКИЕ ОСНОВЫ ИССЛЕДОВАНИЯ ПРОБЛЕМ ЯДЕРНОЙ БЕЗОПАСНОСТИ 1.1 Ядерная безопасность в рамках национальной безопасности 1.2 ... Согласно данным МАГАТЭ в мире действует 438 энергетических ядерных реакторов, 277 исследовательских реакторов, сотни объектов топливного цикла, такие как заводы по производству ... Случаи задерживания на таможенных постах радиоактивного металлолома, перевозки в карманах отработанных ампульных источников ионизирующего излучения для последующей их передачи на ...

    • Учет и утилизация отходов

    • Оглавление Введение. 2 1. Понятие об отходах и их классификация. 3 2. Хранение отходов. 5 2.1. Выбор места размещения хранилищ.. 6 2.2. Использование ... Размещение радиоактивных отходов. Такой способ получил широкое применение при сжигании органических отходов низкой и средней активности, что позволяет перевести опасные отходы в инертную форму и уменьшить их объем ...

    • Ядерные исследования в странах Латинской Америки

    • Оглавление Введение Глава 1. История развития ядерных технологий в странах региона 1.1 Аргентина 1.2 Бразилия 1.3 Куба 1.4 Мексика Глава 2. История ... Текущая государственная программа Аргентины в области ядерной энергии, предусматривает проведение НИОКР по 6 основным направлениям: реакторы и АЭС, топливный цикл, ядерные отходы ... А следующим шагом станет формирование международного центра для хранения и рециклирования отработавшего ядерного топлива, куда совладельцы и клиенты МЦОУ смогут сдавать выгруженные ...

  • Назад

  • Приоритетные пути развития и реализации новых технологий, отвечающих требованиям промышленной экологии 1. Ресурсосберегающая техника производства стеклянного волокна В химико-технологическую систему производства стекловолокна входят следующие подсистемы, операторы и процессоры: A. Подсистема выработки непрерывного стеклянного волокна с показателями качества, соответствующими определенным стандартам. I. Оператор выработки непрерывного стекловолокна: 1 - процессор намотки стеклонити на бобины, 2 - процессор смачивания пучка волокон ззмасливателем, 3 - процессор формирования пучка волокон, 4 - процессор расплавления стеклошариков, 5 - процессор дозирования стеклошариков. B, Подсистема выработки стеклянных шариков. I. Оператор выработки готовых стеклошариков: 1 - процессор охлаждения отжига готовых стеклошариков, 2 - процессор формования заготовок стеклокапли в шарики, 3 - процессор транспортировки заготовок стекломассы, 4 - процессор дозирования струи стекломассы на заготовки, 5 - процессор формирования струи стекломассы. С*. Подсистема образования стекломассы из компактированной шихты с заданными показателями. I. Оператор образования стекломассы из компактированной шихты с заданными показателями: 1 - процессор охлаждения стекломассы, 2 - процессор гомогенизации стекломассы, 3 - процессор осветления стекломассы, 4 - процессор стеклообразования, 5 - процессор силикато-образования. II. Оператор пламенного нагрева стекломассы: 1 - процессор пламено-го нагрева стекломассы, 2 - процессор дозирования топлива. III. Оператор дозирования и загрузки компактированной шихты и стеклобоя: 1 - процессор дозирования компактированной шихты, 2 - процессор дозирования стеклобоя, 3 - процессор транспортировки компактированной шихты, 4 - процессор транспортировки стеклобоя. IV. Оператор вторичного использования тепла отходящих газов: 1 - процессор рекуперации тепла отходящих газов, 2 - процессор дозирования воздуха. С2. Подсистема классификации компактированной шихты по фракциям. 1. Оператор классификации компактированной шихты: 1 - процессор транспортировки возвратных фракций, 2 - процессор классификации компактированной шихты по фракциям, 3 - процессор дробления компактированной шихты. С3. Подсистема образования компактироованной шихты с заданными технологическими и структурно-деформационными свойствами. I. Оператор охлаждения и упрочнения компактированной шихты: 1 - процессор транспортировки компактированной шихты и просыпи, 2 - процессор упрочнения компактированной шихты за счет протекания твердофазных реакций и тепломассообменных процессов. II. Оператор образования компактированной шихты в виде плитки с заданными технологическими и структурно-деформационными свойствами: 1 - процессор охлаждения плитки после ее выхода из валкового пресса, 2 - процессор образования из порошкообразной шихты компактированной в виде плитки, 3 - процессор предварительного уплотнения порошкообразной шихты, 4 - процессор дозирования возвратных фракций, 5 - процессор дозирования порошкообразной шихты. С4. Подсистема увлажнения и смешения порошкообразной шихты. 1. Оператор увлажнения и смешения порошкообразной шихты: 1 - процессор смешения исходных компонентов в гомогенную смесь, 2 - процессор увлажнения и дозирования связующего компонента, 3 - процессор дозирования компонентов шихты. Аналогичным образом анализируется операторная модель с эколого-экономических позиций. Техника измельчения ПМ Промышленная установка газоструйного измельчения кварцевого песка представлена на р и с. 2. Энергоносителем является или холодный воздух, или нагретая газовоздушная смесь. Исходный кварцевый песок с размером частиц не более 0,8 мм и влажностью до 0,5% через дозатор по течкам поступает в инжекционные узлы, где увлекается скоростным потоком горячего воздуха с одновременным термическим ударом и в разгонных трубках ускоряется до 300-400 м/с. Оптимальные режимные параметры промышленной установки для достижения необходимых дисперсионных характеристик измельченного кварцевого песка представлены в табл. 1. Наименование параметровХарактеристика параметров Режим 1 Режим 2 Удельный расход энергоносителя, нм3/т кварцевого песка14401100Расход энергоносителя, hmj/h26002400Температура энергоносителя, °С35590Удельный расход электроэнергии, кВт ч/т измельченного кварцевого песка7,46,0 Длительная промышленная эксплуатация установки в различных аэродинамических и температурных диапазонах показала, что работа измельчителя в режиме 1 является наиболее приемлемой для заводских условий и позволяет получать заданные технологическим регламентом характеристики сырья. Для компонентов с твердостью 3-5 ед. по шкале Мооса на базе ударно-отражательного измельчителя разработана технология измельчения карбонатного сырья, предусматривающая ввод в измельчитель ПАВ в количестве 0,03-0,4% с плотностью, промежуточной между насыпной плотностью исходного и насыпной плотностью измельченного сырья. С целью повышения надежности и снижения износа рабочих органов измельчителя на первых двух стадиях в питание дробилки дополнительно вводится измельченный продукт в количестве 7-25%, а на последующих стадиях это количество уменьшается до 1-5%, причем дополнительно вводимый продукт увлажняется до 0,2-3,5% боросодержащим 30-70%-ым раствором или обрабатывается порошкообразным боросодержащим сырьем в количестве 2-7%-ым с удельной поверхностью в 1,1-2,3 раза превышающей удельную поверхность измельченного карбонатного сырья. Дополнительно карбонатное сырье перед измельчением однократно-трехкратно может обрабатываться 7-25%-ым подогретым до 65-95 °С водным раствором А!203 и CaF2, включающим компоненты в следующем соотношении: А1203 - 11-18; CaF2 - 0,5-4 в количестве 0,5-10% от массы сырья, и подвергаться одно-трехкратному охлаждению путем эндотермического удара длительностью 0,5-2,5 мин. На рис. 3 представлена усовершенствованная технологическая схема аэробильного измельчения известняка и доломита, реализованная на заводах стеклянного волокна. Отличительной особенностью данной схемы является конструкция ударной поверхности ротора измельчителя, выполненная со сквозными вдоль оси каналами. Универсальность оборудования и постоянство дисперсного состава независимо от минерального состава сырья обеспечивается эффектом периодического увеличения скорости ротора измельчителя в 1,5-1,65 раза, затем - уменьшения до первоначального значения. Техника смешения порошковых материалов Целью смешения ПМ является получение высокооднородной, активированной смеси из компонентов с различными фракционными и химическими характеристиками, а также в ряде случаев ввод технологических и увлажняющих добавок. На рис. 4 представлен вариант ресурсосберегающей технологической схемы пневматического смешения-измельчения стекольной шихты. Процесс смешения в аппарате основан на принципе «единый бункер». Поступившие совместно взвешенные компоненты шихты пневматически смешиваются системой струй воздуха, создающих пульсирующие вихревые условия внутри смесителя, что и позволяет создать гомогенную смесь компонентов. Длительность смешения составляет 2-3 мин, а среднее потребление воздуха - 425 м3/ч при стандартной температуре и давлении. После окончания процесса смешения сырьевая смесь пневматически транспортируется на следующую заранее выбранную стадию процесса примерно за 5 мин. Заполнение смесителя компонентами занимает около 1 мин. Отработанный воздух выпускается через рукавный фильтр. Ниже приведены технические характеристики смесителя-измельчителя. 1. Вместимость - 1250 кг. 2. Корпус - из листовой низкоуглеродистой стали толщиной 10 мм. 3. Выпускной клапан - 0 406 мм. Клапан воздушного фильтра - 0 150 мм. Выпускной клапан - 0 101,6 мм. 4. Масса оборудования - 1080 кг. Размер компонентов шихты - Д - 400 мкм. 5. Влажность - 0,8%, исключая отходы стекловолокна и технологических связующих. 6. Масса одной партии шихты - 1250 кг. 7. Длительность отвесов компонентов шихты, смешения -измельчения и транспортировки ~ 22 мин. 8. Длительность последующих циклов взвешивания, смешения-измельчения и транспортировки - 12 мин. 9. Насыпная масса шихты - 960 кг/м3. Некоторые другие технологические характеристики представлены в табл. 2. Наименование компонентов шихтыНасыпная, масса, кг/м3Длительность подачи, сВлажность, %Размер частиц, мкмОксид кремния13001170,5(90%) 70Борная кислота700871,0(97%) 400Доломит1200510,5(40%) 75Мел900630,5(40%) 75Глинозем обожженный1100382,0(100%) 150Сульфат натрия или отходы газоочистки1100 110031 1502,0 не регл.(100%) 150 (100%) 150Флюорит1500321,0(45%) 53 Комплексное изучение и анализ процесса смешения борсодержащих шихт в пневмоструйном смесителе позволили оптимизировать данную технологию и в промышленных условиях достигать высокой однородности порошковых шихт. Рекомендуются следующие режимные параметры смесителя: Давление воздуха Длительность Длительность Длительность на смешение, МПа смешения, мин п°Дачи импульса задержки подачи воздуха, с импульса воздуха, с 0,35-0,40 2,7-3,0 3,0 2-4 На базе реализованного в промышленности смесителя разработаны и внедрены новые способы подготовки стекольных шихт, сочетающих одновременно эффект смешения и измельчения основных, как правило, наиболее тугоплавких компонентов. Процесс стекловарения такой шихты в сравнении с традиционной показал следующие преимущества: длительность варки сокращается на 18-24%, а однородность стекла растет на 12-14% Техника компактирования ПМ Сырьевые компоненты шихты, прошедшие стадии предварительной подготовки направляются по трубопроводу в накопительной бункер 1 с вибратором 2, а из него через дозатор 3 в расходный бункер 5 с подпрессователем-смесителем валкового пресса 6. Основной агрегат установки - валковый пресс конструкции МГУИЭ имеет следующие характеристики: 1. Диаметр валков, м 0,52 2. Длина рабочей поверхности валков, м 0,16 3. Частота вращения валков, мин"18 4. Размер сечения загрузочного бункера, м0,16x0,40 5. Высота заполнения бункера шихтой, м1,4 6. Величина регулируемого зазора между валками х 103, м2-8 7. Давление в гидросистеме, МПа10-25 8. Производительность по плитке, т/ч5-6 Количество подаваемой шихты на компактирование составляет 300-1200 кг/м3 и регулируется вначале «грубо», например, шлюзовым затвором 3 и затем «плавно» вибрационным питателем 4. Толщину ленты устанавливают в зависимости от максимальных размеров наиболее твердого компонента шихты, например, кварцевого песка с твердостью по шкале Мооса 6,5-7 ед., которую регулируют в пределах dmax. Скорость компактирования шихты при этом устанавливают в диапазоне 0,02-5,2 м/с. За счет стабилизированного столба шихты над валками, сил внутреннего трения частиц шихты и внешнего трения на границе раздела «шихта-валок» происходит процесс разрушения отдельных частиц шихты. Наблюдается процесс измельчения отдельных компонентов, имеющих твердость по шкале Мооса 3-9 ед. Происходит изменение формы их зерен от сферической до игольчатой и увеличивается удельная поверхность шихты. Следовательно, ее активность также повышается: а) в холодном состоянии при компактировании растет прочность и плотность ленты, уменьшается количество просыпи, то есть растет производительность по готовому продукту; б) в горячем состоянии при стекловарении наблюдается значительное ускорение процессов растворения тугоплавких зерен шихты вследствие нарушения их структуры и уменьшения размеров. Таким образом, процесс компактирования сопровождается при этих режимах механическим измельчением отдельных компонентов шихты. Образуются новые поверхности со специфическими центрами с преобладанием отрицательно заряженных ионов О2". Вследствие гидролиза на поверхности таких компонентов появляются также отрицательные заряды, например, у кварцевого песка по следующей схеме: Этот механизм обуславливает протекание на поверхности частиц шихты обменных химических и твердофазных реакций с присоединением положительно заряженных остальных компонентов. Растет плотность и прочность плиток, а следовательно, и производительность процессов компактирования и стекловарения. Таблица Параметры компактированной шихты Характеристика компактированной шихтыПоказатели/. Характеристика свежеприготовленных плиток шихты взимних условиях 1. Плотность, кг/м319202. Насыпной вес, кг/м38603. Прочность, МПа- на растяжение0,5-0,8- на сжатие1,0-1,54 Влажность,%6-8//. Характеристика плиток шихты после 5-суточного хра-нения при 1. Прочность, МПа- на растяжение2,5- на сжатие4,82. Влажность,%5-7///. Толщина плиток, мм4-6IV. Распределение плиток шихты по размерам,%50x80 мм6-1032x25 мм60-75менее 35x25 мм18-34 Далее компактированная шихта поступает на конвейер 8 и элеватором 9 подается для классификации в грохот 10 в зависимости от требований производства на плитку или ленту 11 и 12. Конвейером 13 готовый продукт направляется в бункер-накопитель 14 с шибером 15, а из него - на склад или в стекловаренную печь. В табл. 4 представлены варианты использования способа с различными режимными и технологическими параметрами и даны технические характеристики способа. Отсутствие стадий увлажнения шихты специальным связующим, ввода пара для подогрева и сушки плиток или ленты, а также простота конструкции пресса в сравнении с другими методами уплотнения ПМ значительно повышают плотность плиток и снижают разброс по плотности при повышении качества стекла. Наименование параметров компактированияЕД иэм.Шихта АБ-1НС-3XT-1НС-2ОСНС-2А1. Начальная влажность шихты%3,43,34,33,62,12,62. Влажность шихты перед компактированием%6,35,26,88,44,15,63. Количество просыпи%353152020234. Толщина плитокмм2,32,02,02,42,12,55. Характерный линейный размер плитокмм1914282022336. Влажность плиток%4,03,46,35,93,64,87. Прочность на сжатиеМПа0,71,62,91,71.42,68. Плотностькг/м31450157017271870190017709. Давление компактированияМПа11011011011011011010. Ускорение процесса варки%303020101520 Технико-экономический эффект от использования разработанного способа подготовки шихт выражается в увеличении производительности процесса компактирования в 1,2-1,5 раза, а процесса стекловарения на 23-40%. Летучесть щелочных соединений в процессе варки шихты уменьшилась на 1,6-5,3%, а запыленность атмосферы снизилась в 2,4-7,5 раза. Одновременно снизился расход топлива в среднем на 20%. Выход годной продукции увеличился на 5-7%. Неоднородность стекломассы уменьшилась со 150-180 А до 120 А. Техника вторичной переработки твердых силикатных отходов На основе разработанного алгоритма созданы и предлагаются к реализации новые процессы и аппараты, технологические комплексные линии и изделия, направленные на защиту биосферы и человека от воздействия отходов стекла, образующихся как в промышленном, так и коммунально-городском секторах экономики. По предложенной классификации отходов выявлены на примере московского и владимирского регионов приоритетные направления экобиозащит-ных технологий, которые успешно апробированы и реализуются в промышленном масштабе. Первая технология - получение из стеклобоя порошков с максимальным размером до 800 мкм. Процесс заключается в термообработке и резком охлаждении нагретого боя. За счет эндоудара происходит изменение структуры отходов с последующим их самоизмельчением. Все стадии процесса протекают в одном аппарате. Технология отличается компактностью и экологической безопасностью. Вторая технология - получение из стеклобоя также различного происхождения расплава с последующей его грануляцией до размеров 2-5 мм. Реактор для переплавки снабжен двойным сводом, в котором размещен рекуператор. Установка отличается высокой производительностью и отвечает требованиям современных малоотходных производств. Область использования: полученные порошки и гранулы повторно используют в процессах стекловарения или в качестве дешевых наполнителей различного вида в производстве стройматериалов, дорожных работах и др. Учитывая специфические свойства стеклянных отходов, предложена третья технология - полученные по первым двум технологиям порошки и гранулы перерабатывают в камере-формователе в уникальные микроизделия: светоотражающие шарики размером до 650 мкм и пустотелые сферы - до 200 мкм. Технические преимущества нового материала - низкая себестоимость по сравнению с отечественными и зарубежными аналогами, так как не требуется подготовки специальных компонентов и стекломассы. Область использования: на базе полученных микроизделий разработан ряд товарной продукции - лакокрасочные и антикоррозионные покрытия, светоотражающие мастики и специальная термоизоляция, выпуск которых налажен на российских предприятиях. Основные технические характеристики микроизделий ШарикиПолые сферыПлотность 2,50-2,55 г/см3 Состав стекла: натрий-кальций-силикатный; боросиликатный и др. Показатель преломления 1,52-1,54 Твердость (по Моосу) 5-6 ед. Температура размягчения 650-730 °СПлотность - 0,24-0,40 г/см3 Кажущаяся плотность - 0,11-0,35 г/см3 Коэффициенты заполнения объема (КЗО) - 55-64 Плавучесть - больше 92% Изостатическая прочность - 5-10 МПа Перспективным является использование микроизделий в качестве абразивного материала для автомобилестроения и наполнителя лечебно-ожоговых и противопролежневых кроватей. На рис. 6. изображена схема аппаратурного оформления технологической линии получения стеклянных микрошариков. В состав основного оборудования для получения микрошариков входят измельчитель стеклогранулята со встроенным воздушно-механическим классификатором 1, сепаратор-циклон 2 для отделения от потока воздуха измельченных частиц стекла, направляемых в дальнейшем на формование микрошариков, рукавный фильтр 3 для отделения стеклянной пыли и очистки сбрасываемого воздуха в атмосферу, вентилятор 4, обеспечивающий газодинамический режим работы измельчителя и сепараторов, питатель микрошариков стекла 5, воздушный эжектор 6, печь формования микрошариков 7, сепаратор-циклон 8 для отделения основной массы сферических частиц от газовоздушного потока, сепаратор 9 для выделения микрошариков маленького размера, классификатор виброкипящего слоя 11 с сепараторами 12.1-12.3, хвостовые вентиляторы 10, 13, обеспечивающие газодинамические режимы работы соответственно печи формования и классификатора виброкипящего слоя. Процесс изготовления стеклянных микрошариков осуществляется следующим образом. Исходный стеклогранулят загружается в измельчитель с встроенным классификатором 1, в котором происходит его измельчение и предварительная классификация частиц стекла по размерам. Из классификатора порошок стекла потоком воздуха уносится в первый сепаратор 2, в бункере которого осуществляется сбор стеклопорошка, направляемого далее в печь формования. Поток воздуха после отделения основной массы частиц стекла в сепараторе 2 направляется в рукавный фильтр 3, в котором осуществляется эффективная очистка газовоздушного потока перед выбросом в атмосферу. Стеклянный порошок из бункера сепаратора 2 транспортируется в бункер питателя 5, из которого с помощью воздушного эжектора 6 поступает в пневмотранспортную систему 14. Транспортирование порошка в печь формования 7 осуществляется потоком сжатого воздуха, нагреваемого отходящими газами в спиральном теплообменнике 15, установленном в верхней части печи формования. Отформованные микрошарики охлаждаются в потоке газов за счет подсоса холодного атмосферного воздуха в верхней части печи формования. Отделение отформованных микрошариков от газовоздушного потока осуществляется последовательно в первом сепараторе 8 и втором сепараторе 9, причем во втором сепараторе происходит выделение наиболее мелких частиц. Стеклянные микрошарики, собранные в бункере сепаратора 8, транспортируются в классификатор виброкипящего слоя 11, где происходит разделение всей массы частиц по размерам на отдельные фракции, улавливаемые в сепараторах. Газодинамический режим работы установки формования и классификатора микрошариков по размерам обеспечивается работой хвостовых вентиляторов 10 и 13 соответственно.Таким образом, рекуперация отходов стекла и стеклянного волокна имеет большое значение для окружающей среды, экономии сырьевых материалов и энергии. При этом целесообразность применения того или иного способа рекуперации в первую очередь определяется возможностью направленной их переработки в качестве сырья для основного производства и создания замкнутых химико-технологических систем с использованием вторичных материальных ресурсов. Сравнительные показатели микроизделий -стеклошариков (СШ) и микросфер (МС) Наименование показателейЕд. изм.Предлагаемый вариант [4]АО «Пульс» («Химлаб-прибор»), г. КлинАО «Новгородский з-д стекловолокна»« Potters Industries lnc.» (США) СШМССШМССШ1. Размеры частицмкм40-60010-200300-70050-12040-1502. Плотностьг/смл2,5-2,550,24-0,402,50,35-0,522,53. Плавучесть, более%—5-10—3-7—4. Светоотражение%78-8280-8367-69—87-915. Твердостьед. (по Моосу)5-6—4-5—6. Температура размягчения°С650-730650-730530-580660-6807. Состав стеклаалюмо-силикатныйборо-силикатныйнатрий-кальций силикатный8, Исходное сырьепромышленные и бытовые отходы стекласпециально подготовленная стекломассаспециально подготовленный расплав9. Разброс по размерам%±4+6±7+9±30+35±40+509+710 Стоимость$/кг121,54-52,5-311. Производительность установкикг/час100753040-45 2. Фильтровальная техника защиты биосферы от промышленных выбросов порошковых и других технологий Предложенные выше технические решения, направленные на интенсификацию малоотходных процессов порошковых технологий, как правило, включают в свой состав аспирационные устройства, снижающие остаточное количество вредных выбросов до предельно допустимых концентраций. Учитывая планируемый рост объемов производства и соответствующее увеличение безвозвратных потерь ценных компонентов со шламом и сточными водами, за основу производства принят сухой способ очистки пылегазовых потоков технологического оборудования. Стекольное производство По результатам промышленных исследований режимов фильтрования пылегазовых потоков в линиях измельчения карбонатного сырья и кварцевого песка разработан новый способ очистки и устройства для его реализации - фильтры рукавные и высокотемпературное исполнение - до 350 °С: ФРИТ-30, обеспечивающие снижение запыленности газов на выходе из аппарата до 0,20 мг/м3 при гидравлическом сопротивлении Ар Ј 550 Па. Конструкция бункерного фильтра ФРИД-15 для газовых потоков с входной запыленностью 500 г/м3 также обеспечивает выполнение требований промышленной экологии. Данные технические решения внедрены на ряде промышленных предприятий. На р и с. 7 показан общий вид фильтра серии ФРИ. Модульное исполнение устройства обеспечивает его применимость как в технологических линиях, так и в системе общей аспирации производственных помещений. Конструкция отличается высокой эффективностью и обеспечивает достижение ПДВ перерабатываемых ПМ. В табл. 7 приведены основные показатели фильтра ФРИ-ЗОЛ в линии роторных измельчителей карбонатного сырья.Технические показатели фильтра ФРИЗОЛ №Наименование показателейЕдиницы измеренияЗначение показателейпаспортные данныепо результатам испытаний1.Производительность (пропускная способность) по очищаемому газу, не менеем3/ч370037702.Степень очистки, не менее%99,9999,973. 3.1. 3.2.Массовая концентрация веществ в газовых выбросах: на входе, не более на выходег/м3 г/м3500 0,0265 0,0184.Гидравлическое сопротивление, не болеекПа3,01,065.Разрежение очищаемого газа, не болеекПа8,0U66.Температура очищаемого газа, не более°С130907.Габаритные размеры, не болеемм2328x4770x19852328x4770x19858.Энергетические затраты на очистку 1000 м3/ч, не болеекВт-ч1,160,7239. 9.1 9.2 9.3Показатели надежности: установленная безотказная наработка показатель ремонтопригодности назначенный ресурс до капитального ремонтач ч год5000 36 55760 8 Способ промышленной реализации очистки пылегазовых выбросов в зависимости от режимов работы рукавных фильтров, химического и гранулометрического составов шихт и их ингредиентов заключается в следующем. Запыленный поток газа поступает в корпус фильтра, проходит через фильтрующие рукава, очищается от пыли и выбрасывается в атмосферу. Время работы одного ряда рукавов в режиме фильтрации за один цикл составляет 2-5 мин и определяется временем, которое идет на продувку соседних рукавов и временем между продувками. Регенерация рукавов фильтра осуществляется импульсной продувкой сжатым воздухом. При достижении гидравлического сопротивления 0,6-1,5 кПа и создания дополнительного фильтрующего пылевого слоя с относительной толщиной ПфС/птк = 0,5-1,2 проводят последовательно импульсную продувку при соотношении времени между регенерациями одного и того же ряда к време ни между регенерациями соседних рядов Тмр/Тср = 20-50. Период фильтрации должен составлять 1,5-6 мин, а удельная нагрузка по газу - 0,5-2,5 м3/м2 мин. Результаты заводских испытаний сведены в табл. 8, из которых следует, что рекомендуемые режимы фильтрации способствуют увеличению срока службы рукавов на 30%, а эффективность очистки растет с 99,4% до 99,9%. Гальваническое и травильное производства Фильтр предназначен для санитарной очистки аспирационного воздуха от растворимых в воде аэрозольных частиц примесей в гальванических и травильных производствах машиностроительных предприятий. Волокнистый фильтр ФВГ-М по сравнению с аналогом ФВГГ имеет следующие преимущества: меньшие габариты; возможность очищать воздух как от аэрозолей кислот, так и от щелочей; простота обслуживания. Эффективность очистки составляет 90-95%, гидравлическое сопротивление фильтра составляет 500-700 Па. Применение фильтров позволяет снизить выбросы в атмосферу токсичных веществ до норм ПДВ. Принцип работы фильтра заключается в следующем. Жидкие и твердые, растворимые в воде аэрозольные частицы, содержащиеся в очищаемом газе, улавливаются волокнистой фильтрующей перегородкой. Уловленная жидкость стекает в нижнюю часть перегородки и выводится из аппарата через сливные штуцеры. Твердые частицы образуют осадок на фильтровальной перегородке, что приводит к возрастанию гидравлического сопротивления фильтра. При достижении определенной величины сопротивления производится промывка фильтрматериала водой с обеих сторон. Промывные воды через сливные штуцеры выводятся на станцию нейтрализации. Возможна промывка фильтрующего элемента вне корпуса. Фильтры изготавливаются в двух исполнениях. Исполнение 1 применяется в случаях, когда в очищаемом воздухе содержатся жидкие частицы, которые требуют непрерывного вывода уловленной жидкости из корпуса аппарата, например, для таких операций, как хромирование, травление нержавеющей стали в серной кислоте и др. В тех случаях, когда улавливаемые частицы кристаллизуются в газоходе до фильтра или непосредственно на фильтрующей перегородке, то наряду с исполнением 1 возможно применение фильтра исполнения 2. В этом случае промывка кассеты производится только вне корпуса, например, в процессах сернокислотного никелирования, электрохимического обезжиривания и др. Периодичность промывки зависит от концентрации улавливаемого продукта и ориентировочно составляет 1 раз в 15-30 суток. Механосборочное, металлообрабатывающее и электродное производства Фильтры предназначены для очистки воздуха от жидких аэрозолей. Могут использоваться в комплекте с холодновысадочными автоматами, фрезерными, токарными и другими металлообрабатывающими станками, а также в других производствах, где образуются жидкие аэрозоли. Позволяют возвращать уловленные СОЖ и масла в технологический процесс. Основные преимущества: ФРМ-1500- малые габариты и простота обслуживания; ФВА-М-2000 - высокая степень очистки; ФВМ - эффективное использование в вентсистемах для централизованной очистки воздуха от многих единиц оборудования. Агрегат для отсоса и улавливания пыли АОУМ-1000 предназначен для отсоса и очистки воздуха от абразивной пыли и других аэрозольных частиц сухих пылей в механосборочных, металлообрабатывающих, электродных и др. производствах при концентрации пыли до 3 г/м3 и размере частиц более 3 мкм. Позволяет возвращать очищенный воздух в атмосферу цеха с соблюдением санитарных норм за счет использования высокоэффективных фильтрующих материалов. Агрегат включает: -две ступени очистки: 1-я ступень - инерционный осадитель грубых частиц и 2-я ступень тонкой очистки от сухой пыли на рукавном фильтре с механическим отряхиванием; - бункер для сброса уловленной пыли с выгрузкой в контейнер; - центробежный вентилятор типа ВЦ-14-46 с камерой шумоглушения. Техническая характеристика 1. Производительность, м31000 2. Разрежение во всасывающем патрубке, Па300 3. Мощность электродвигателя, кВт1,5 4. Число рукавов, шт.16 5. Размеры рукавов, мм диаметр 120 высота 1000 6. Степень очистки воздуха,% 95 7. Габаритные размеры, мм 1000x1070 высота 2100 8. Масса, кг 170 По сравнению с аналогичными аппаратами ЗИЛ-900 и ПА-218 агрегат АОУМ-1000 имеет следующие преимущества: - более высокая степень очистки; - высокоэффективный механизм регенерации запыленных рукавов; - наличие приборов контроля за насыщением фильтра; - экономия тепла и электроэнергии за счет рециркуляции воздуха. Лазерная и плазменная обработка металлов Рекомендуется использовать фильтр складчатый кассетный ФСК для улавливания тонкодисперсных пылей. Фильтр предназначен для очистки воздуха и газов от аэрозольных частиц сухих пылей при концентрации их в объеме до 50 мг/м3 и размере частиц от 0,3 мкм и более. Фильтры могут использоваться для очистки воздуха и газов при электро- и газосварке, лазерной и плазменной обработке металлов; при рассеве и упаковке порошков тонкого помола, их обжиге и спекании, а также в радиоэлектронной, медицинской, микробиологической и других отраслях промышленности. Фильтры ФСК обладают высокой степенью очистки воздуха от вредных компонентов и обеспечивают возврат очищенного воздуха в цех при соблюдении санитарных норм. Фильтры выпускаются производительностью 1000-2000 м3/ч по очищаемым газам, имеют исполнение стационарное и передвижное. По желанию заказчика фильтры оснащаются предфильтром большой пылеемкости и постфильтром для очистки воздуха от вредных газовых компонентов. Фильтрующая кассета имеет пылеемкость 250 г/м3 и способна накапливать до 5 кг пыли, после чего меняется на новую. Производства с отходами в виде высокодисперсных твердых и жидких аэрозолей Рекомендуется использовать универсальные электростатические фильтры ЭФВА, предназначенные для очистки воздуха от сварочных, масляных и других высокодисперсных электронепроводящих аэрозолей при их концентрации до 200 мг/м3 и размере частиц от 0,001 мкм и более. Исполнение - передвижные автономные с вентиляторами и полноповоротными воздуховытяжными устройствами и стационарные производительностью от 1 до 40 тыс. м3/ч очищаемого воздуха. Степень очистки воздуха от аэрозолей 93-99%. Фильтрующие кассеты из алюминия легко регенерируются промывкой. Основные преимущества: низкие эксплуатационные затраты, малые габариты и аэродинамическое сопротивление, способность улавливать высокодисперсные твердые и жидкие аэрозоли. 3. Перспективные концепции ядерных технологий Ядерная энергетика Для массового внедрения ядерной энергетики необходимо разработать новое поколение АЭС, которое бы полностью исключало попадание радионуклидов в окружающую среду при любых авариях на энергоблоке. В основу положен многобарьерный принцип удержания радионуклидов в случае аварии. Первый барьер - сама таблетка диоксида урана. Большая часть продуктов распада удерживается в самой таблетке. Второй барьер - герметичная оболочка тепловыделяющих элементов, которая удерживает даже газообразные радионуклиды. Третий барьер - плотно-прочные корпус реактора и трубопроводы первого контура, которые удерживают радионуклиды в случае разгерметизации оболочки твэлов. Четвертый барьер - массивная, прочная герметичная оболочка, окружающая водо-водяные реакторы или здание реактора. Приоритетными направлениями перспективных АЭС является создание такой системы безопасности, которая практически полностью исключала бы влияние обслуживающего персонала на ход остановки и расхолаживания реактора в случае аварии. Такой подход позволит в перспективе иметь реактор с внутренне присущей безопасностью. В наибольшей степени в настоящее время этому принципу соответствует проект атомной станции теплоснабжения, принципиальная схема имеет шесть защитных барьеров) которой представлена на рис. 9. Атомная станция теплоснабжения проектировалась для строительства в непосредственной близости к крупным городам. Поэтому ACT удовлетворяет наиболее строгим требованиям по обеспечению безопасной работы энергоблока. Окончательное удаление радиоактивных отходов Хранилище для окончательного удаления РАО часто называют могильником. Хотя такое хранилище непременно должно содержать средства контроля за миграцией радионуклидов, а также технические барьеры для препятствий этой миграции. Конструкция хранилища и его расположение различны для разных категорий отходов. Для низкоактивных отходов можно строить приповерхностные и наземные сооружения; для среднеактивных предлагается строительство подземных специальных хранилищ; для высокоактивных предполагается их удаление в глубокие геологические формации, возраст которых составляет сотни миллионов лет. 4. Вторичная переработка и уничтожение продуктов оборонной промышленности. Конверсионные технологии Ядерное оружие - переработка плутония оружейного качества Разработан простой технологический процесс перевода плутония оружейного качества в смешанное уран-плутониевое топливо ядерных реакторов типа БН и ВВЭР, основанный на использовании пирохимических процессов в расплавленных солевых системах. Особенности технологии: - высокая скорость растворения плутония; - минимум химических операций по очистке и конверсии плутония в оксидное топливо; - компактность оборудования; - минимум радиактивных отходов; - возможность получения различных видов топлива: гранулят - для виброуплотненных твэлов; мелкодисперсный порошок - для изготовления таблеток.Химическое оружие В соответствии с Конвенцией о запрещении разработки, производства, накопления ХО и его уничтожения прелагаются десятки отечественных и зарубежных технологий вторичной переработки и уничтожения основных отравляющих веществ, среди которых особое место в связи с их высокой токсичностью занимают кожно-нарывные и нервно-паралитические ОВ. Наиболее сложным в технологическом оформлении является уничтожение ОВ в боевых оболочках. В США используют два метода уничтожения: химическая нейтрализация и высокотемпературное сжигание. В основу этих технологий заложены следующие методы уничтожения ХО: термические -пиролиз и сжигание; химический и электрохимический; плазменный; лазерный; криогенный; биологическая детоксикация и уничтожение ядерным взрывом. Пример реализации одного из методов представлен на р и с. 12. Всесторонний анализ рассмотренных методов уничтожения ХО позволил американским специалистам выбрать в качестве базового метода прямое сжигание ОВ в специальных печах при высоких температурах. Этот метод прошел экспериментальную проверку и был реализован на установке JASADS. В РФ разработан и экспериментально подтвержден способ взаимоутилизации ОВ типа люизит и отвального гексафторида урана - отхода атомной промышленности. Производство порохов Конверсия пороховых заводов осуществляется по двум направлениям 1. Продолжение выпуска порохов в мирных целях для различных отраслей промышленности. 2. Организация на базе пороховых заводов выпуска товаров народного потребления. Вторичное использование баллиститного пороха основано на том, что он является конденсированным источником энергии, которая может быть выделена в следующих трех режимах: горения, детонации и газификации. Режим горения используется для изготовления зарядов двигателей ракет широкого назначения, фейерверков, МГД-генераторов и др. Режим детонации - взрыв может совершать как разрушительную, так и созидательную работу. Режим газификации обеспечивает управляемую генерацию газов по требуемому режиму. Выпуск гражданской продукции на базе вторичного использования баллиститного пороха позволяет: - использовать пороха для добычи нефти, в геологии, для горных и других работ; - осуществлять поиск полезных ископаемых методом сейсмоэффекта; - применять пороховые аккумуляторы давления и газогенераторы давления в установках для тушения пожаров; - использовать пороха для импульсной обработки металлов; резки громоздких металлоконструкций; упрочнения материалов направленным взрывом и др. - применять пороха для синтеза алмазов, корунда, нитрида бора и других сверхтвердых материалов. - использовать пороха в системах для борьбы с градом, громом, дождем и повышения ресурсов водообеспечения засушливых районов, а также в качестве зарядов для метеорологических и геофизических ракет типа «Алазань», «Кристалл» и др. Основные направления конверсионных технологий: 1. Производство различного вида лакокрасочной продукции, основанной на использовании в качестве сырья нитроклетчатки и, в первую очередь, коллоксилина. 2. Выпуск различных декоративно-отделочных материалов, например, линолеума на основе нитроклетчатки или поливинилхлорида. 3. Производство клеящих, чистящих и моющих веществ. 4. Производство медицинских, парфюмерно-косметических препаратов и др. Характерной особенностью новых разработок является их реализация на основе двойных, наукоемких и автоматизированных технологий, что должно явиться гарантом конкурентоспособности, постоянного спроса и экологической чистоты изделий. 5. Оригинальные технологии снижения акустического загрязнения окружающей среды В РФ разработаны и действуют 80 стандартов, устанавливающих требования к нормированию, измерению и снижению шума. Человек подвергается действию повышенного шума чаще всего на транспортных средствах, в жилой застройке и на рабочих местах. Современная виброакустика предлагает следующие средства защиты от шума: - Улучшение качества воспринимаемого звука - методика базируется на понимании, что шум разного частотного состава, но одинаковый по уровню звука, воспринимается по-разному. Психоакустиками доказано, что разница в восприятии может достигать 10-14 ДВА. - Активная шумозащита, принцип которой основан на интерференции звуковых волн при их наложении. Эта мера осуществляется путем генерирования звуковой энергии дополнительным источником. В развитых странах выпуск специальных устройств активной шумозащиты налажен в широких масштабах. Анализ приведенных данных показывает, что активная шумозащита обеспечивает снижение УЗД на 7-15 дБ на низких частотах. Это большое преимущество активной шумозащиты, так как так называемая пассивная шумозащита наименее эффективна именно на низких частотах. Наиболее эффективно применение активных средств в совокупности с пассивными. 6. Решение проблемы электромагнитной безопасности населения Линии электропередач Для защиты населения вдоль ЛЭП устанавливаются санитарно-защит-ные зоны, в пределах которых запрещается строить жилые и общественные здания. Границы таких зон вдоль трассы ЛЭП с горизонтальным расположением проводов и без средств снижения поля устанавливаются на следующих расстояниях от проекции на землю крайних фазных проводов в направлении, перпендикулярном к ЛЭП напряжением: - 330 кВ 20 м - 500 кВ 30 м - 650 кВ 40 м - 1150 кВ 55 м Радиопередающие устройства Границы санитарно-защитных зон вблизи излучающих систем определяются в зависимости от частоты и мощности излучения. Мониторы с электронно-лучевыми трубками персональных ЭВМ ЭЛТ являются источниками ЭМИ весьма широкого диапазона частот. Порождаемое ЭЛТ низкочастотное, высокочастотное, инфракрасное, видимое световое, ультрафиолетовое и рентгеновское излучения требуют специального анализа и специфических экозащитных мероприятий. Основными источниками ЭМП в НЧ и ВЧ диапазонах являются экран монитора, питающие провода и системный блок. Излучение монитора должно укладываться в нормы ГОСТ Р 50949-96 и СанПиН № 2.2.2.542-96, которые в основном соответствуют известному шведскому стандарту безопасности MPR II, принятому в конце 1990 г. Данный стандарт разработан на принципе ALARA, и учитывает комплексное воздействие на оператора многих психофизиологических и физических факторов, включая ЭМП естественного происхождения. Мониторы ведущих стран с маркировкой «Low Radiation» оснащены встроенными средствами защиты и в полной мере отвечают требованиям Международной организации по стандартизации ISO. Новым направлением является применение металлизированных покрытий, экранизирующих волокон, наносимых изнутри на стенки корпуса монитора, а также специальный состав стекла, из которого сделан экран ЭЛТ. Данные технические решения снижают уровень электростатического поля в 10-100 раз, а переменных электрических и магнитных полей - в 2-5 раз по сравнению с незащищенными моделями мониторов. Дополнительным мероприятием остается использование экранных фильтров. Наивысшую степень защиты обеспечивают следующие фильтры: Эргостар, Polaroid, CP-Workstation, АЗФ-1 «Эргон», «Русский щит». ПК с жидкокристаллическим экраном не имеют источников мощного излучения ЭМП и при работе от аккумуляторов практически безопасны. При работе от сети блок питания необходимо размещать не менее 1,2 м от пользователя.

  • Похожие работы:

  • Отходы одна из основных проблем экологии планеты

    • Деятельность человека в последние 50 лет нанесла непоправимый ущерб нашей планете. К такому выводу пришли авторы самого крупномасштабного в истории исследования экосистемы Земли – проект Mellenium Ecosystem Assesment. Сложившееся положение не оставляет надежд бедным странам на улучшение ситуации и блокирует выполнение целей, намеченных ООН в 2000 г. для развития мира в новом тысячелетии. РефератыЭкология и охрана природы

    • 1.

  • Актуальные вопросы социальной экологии

    • Первая конференция ООН по проблемам окружающей среды состоялась в 1972 в Стокгольме. Она приобрела политическое звучание, когда премьер-министр Швеции Улоф Пальме обвинил США в использовании дефолиантов во Вьетнаме и потребовал, чтобы «экологическая война была немедленно прекращена». В том же году была учреждена Программа ООН по окружающей среде (ЮНЕП – UNEP) для контроля за окружающей средой и координации приемлемых мер. РефератыЭкология и охрана природы

    • 2.

  • Пути развития альтернативной энергетики

    • Как известно не малую часть загрязнения экосистемы состоит из продуктов переработки, сжигания, добычи таких видов топлива как: угол, нефть, газ - считаемых традиционными. Глобальный спрос на энергию увеличивается примерно на 3% в год - в 2025 году энергопотребление составит 22,8 млрд т у. т. Мировые запасы традиционных энергетических ресурсов, по оценкам специалистов, составляют: угля - более 1500 млрд тонн, нефти - 170 млрд т, газа - 172 трлн куб. м. По прогнозам, мировых запасов угля, нефти и газа при непрерывном росте. РефератыЭкология и охрана природы

    • 3.

  • Основные законы и принципы экологии

    • Актуальность темы: В условиях научно-технического прогресса особое значение приобретает изучение взаимодействия общества и природы, человека и биосферы. Сложившийся в ходе социально-экономического и научно технического развития тип «обмена веществ» между обществом и природой часто не вписывается в естественную структуру биосферы. В этих условиях важно уметь определить допустимые пределы воздействия человека на природу. РефератыЭкология и охрана природы

    • 4.

  • Пути охраны флоры. Красные книги

    • Растения играют в жизни человека исключительно важную роль, так как его существование целиком зависит от растений: непосредственно - поскольку они служат ему пищей, и косвенно - поскольку они поедаются животными, мясо которых потребляется в пищу. Растения дают человеку не только белки, жиры, углеводы и минеральные соли, но также витамины. Почти все витамины, необходимые для жизни нашего организма, мы получаем из растений готовыми - животные и человек не могут их синтезировать. Исключение составляю.. РефератыЭкология и охрана природы

    • 5.

  • Оценка эффективности технологий очистки гальванических стоков на Санкт-Петербургском заводе гальванических покрытий

    • Применение защитных, защитно-декоративных и специальных покрытий позволяет решать многие задачи, среди которых важное место занимает защита металлов от коррозии. Коррозия металлов, то есть разрушение их вследствие электрохимического или химического воздействия среды причиняют народному хозяйству огромный ущерб. Ежегодно вследствие коррозии выходит из употребления до 10-15% годового выпуска металла в виде ценных деталей и конструкций, сложных приборов и машин. В отдельных случаях коррозия приводит к авариям. РефератыЭкология и охрана природы

    • 6.

  • Разрушение экологии

    • Ученый из Университета Эдинбурга Дейв Рей опубликовал статью, в которой призывает каждого жителя планеты Земля противостоять катастрофическим изменениям климата на бытовом уровне. Рей считает каждого жителя ответственным за нынешнюю экологическую ситуацию, поэтому и решать проблему, по его мнению, необходимо сообща. В частности, каждый из нас может отказаться от частого употребления кофе. По подсчетам ученого, чашка черного кофе ответственна в среднем за 125 г выбросов углекислого газа в атмосферу. РефератыЭкология и охрана природы

    • 7.

  • Основы экологии

    • Биологическая система — совокупность функционально связанных элементов или процессов, объединенных в целое для достижения биологически значимого результата. Биологическая система - целостная система компонентов, выполняющих определенную функцию в живых системах. К биологическим системам относятся сложные системы разного уровня организации: биологические макромолекулы, субклеточные органеллы, клетки, органы, организмы, популяции. РефератыЭкология и охрана природы

    • 8.

  • Экологизация развития комплексов и секторов экономики

    • Агропромышленный и топливно-энергетический комплексы — крупнейшие в экономике. Сейчас они "утяжеляют" экономику, увеличивают ее природоемкость и закрепляют техногенный тип развития. Для аграрного сектора важнейшая проблема состоит в увеличении плодородия. Различают три вида плодородия: естественное, искусственное и экономическое, последнее является суммой двух первых видов. Для формирования устойчивого сельского хозяйства важнейшее значение имеет. РефератыЭкология и охрана природы

    • 9.

  • Проблемы экологии

    • На всех стадиях своего развития человек был тесно связан с окружающим миром. Но с тех пор как появилось высокоиндустриальное общество, опасное вмешательство человека в природу резко усилилось, расширился объём этого вмешательства, оно стало многообразнее и сейчас грозит стать глобальной опасностью для человечества. Расход невозобновимых видов сырья повышается, все больше пахотных земель выбывает из экономики, так как на них строятся города и заводы. РефератыЭкология и охрана природы

    • 10.

  • 15 вопрос!

  • Глава 2. Проблемы и перспективы развития атомной энергетики 2.1. Развитие атомной промышленности  После втоpой мировой войны мировая электроэнергетика стала крупнейшим инвестиций. Это было вызвано быстрым ростом спроса на электроэнергию, по темпам значительно превосходившим рост населения и национального дохода. Основной упор делался на тепловые электростанции (ТЭС), работающие на угле и, в меньшей степени, на нефти и газе, а также на гидроэлектростанции. До 1969 года АЭС промышленного типа не существовало. К 1973 практически во всех промышленно развитых странах оказались исчерпанными ресурсы крупномасштабной гидроэнергетики. Скачок цен на энергоносители после 1973, быстрый рост потребности в электроэнергии, а также растущая озабоченность возможностью утраты независимости национальной энергетики – все это способствовало утверждению взгляда на атомную энергетику как на единственный реальный альтернативный источник энергии. Эмбаpго на арабскую нефть 1973–1974гг породило дополнительную волну заказов и оптимистических прогнозов развития атомной энергетики. Но каждый следующий год вносил свои коррективы в эти прогнозы. С одной стороны, атомная энергетика имела своих сторонников в правительствах, в урановой промышленности, исследовательских лабораториях и среди влиятельных энергетических компаний. С другой стороны, возникла сильная оппозиция, в которой объединились группы, защищающие интересы населения, чистоту окружающей среды и права потребителей. Споры, которые продолжаются и по сей день, сосредоточились главным образом вокруг вопросов вредного влияния различных этапов топливного цикла на окружающую среду, вероятности аварий реакторов и их возможных последствий, организации строительства и эксплуатации реакторов, приемлемых вариантов захоронения ядерных отходов, потенциальной возможности саботажа и нападения террористов на АЭС, а также вопросов увеличения национальных и международных усилий в области нераспространения ядерного оружия [3; стр.178-182]. 2.2. Проблемы развития энергетики Развитие индустриального общества опирается на постоянно растущий уровень производства и потребления различных видов энергии. Как известно, в основе производства тепловой и электрической энергии лежит процесс сжигания ископаемых энергоресурсов – угла, нефти или газа, а в атомной энергетике - деление ядер атомов урана и плутония при поглощении нейтронов. Масштаб добычи и расходования энергоресурсов, металлов,  воды и  воздуха для производства необходимого человечеству количества энергии огромен, а запасы ресурсов стремительно сокращаются. Особенно остро стоит проблема быстрого исчерпания запасов органических природных энергоресурсов. Мировые запасы энергоресурсов оцениваются величиной 355 Q, где Q - единица тепловой энергии, равная Q=2,521017 ккал = 36109 тонн условного топлива /т.у.т./, топлива с калорийностью 7000 ккал/кг, так что запасы энергоресурсов составляют 12,81012 т.у.т. Из этого количества примерно одня треть (что составляет ~ 4,31012 т.у.т.) может быть извлечена с использованием современной техники при умеренной стоимости топливодобычи. С другой стороны, современные потребности в энергоносителях составляют 1,11010 т.у.т./год и растут со скоростью 3-4% в год, то есть удваиваются каждые 20 лет. Не составляет никакого труда догадаться, что органические ископаемые ресурсы, даже при вероятном замедлении темпов роста энергопотребления, будут в значительной мере израсходованы в самом ближайшем будущем. Отметим также, что при сжигании ископаемых углей и нефти, обладающих сернистостью около 2,5 %, ежегодно образуется до 400 млн тонн сернистого газа и окислов азота, что составляет 70 кг вредных веществ на каждого жителя Земли в год. Использование энергии атомного ядра и развитие атомной энергетики частично снимает остроту этой проблемы. Действительно, открытие деления тяжелых ядер при захвате нейтронов, сделавшее CC век атомным, стало существенным складом к запасам энергетического ископаемого топлива. Запасы урана в земной коре оцениваются огромной цифрой - 1014 тонн. Однако основная масса этого богатства находится в рассеяном состоянии - в гранитах, базальтах. В водах мирового океана количество урана достигает 4109 тонн. В тоже время богатых месторождений урана, где добыча была бы недорога, известно сравнительно немного. Поэтому массу ресурсов урана, которую можно добыть при современной технологии и при умеренных ценах, оценивают в 108 тонн. Ежегодные потребности в уране составляют, по современным оценкам, 104 тонны естественного урана. Так что эти запасы позволяют, как сказал академик А.П.Александров, "убрать Дамоклов меч топливной недостаточности практически на неограниченное время"[4; стр.216]. Другая важная проблема современного индустриального общества - обеспечение сохранности природы, чистоты воды и воздуха. Известна озабоченность ученых по поводу "парникового эффекта", возникающего из-за выбросов углекислого газа при сжигании органического топлива, и соответствующего глобального потепления климата на нашей планете. Проблемы загазованности воздушного бассейна, "кислых" дождей, отравления рек приблизились во многих районах к критической черте. Атомная энергетика не потребляет кислорода и имеет ничтожное количество выбросов при нормальной эксплуатации, что позволяет устранить возможность возникновения парникового эффекта с тяжелыми экологическими последствиями глобального потепления. Чрезвычайно важным обстоятельством является тот факт, что атомная энергетика доказала свою экономическую эффективность практически во всех районах земного шара. Кроме того, даже при большом масштабе энергопроизводства на АЭС, атомная энергетика не создаст особых транспортных проблем, поскольку требует минимальных транспортных расходов, что освобождает общество от бремени постоянных перевозок огромных количеств органического топлива [10; стр. 248-253]. 2.3. Проблемы безопасности  Чеpнобыльская катастpофа и дpугие аваpии ядеpных pеактоpов в 1970-е и 1980-е годы, помимо прочего, ясно показали, что такие аваpии часто непpедсказуемы. Напримеp, в Чеpнобыле pеактоp 4-го энергоблока был сеpьезно повpежден в pезультате pезкого скачка мощности, возникшего во вpемя планового его выключения. Реактоp находился в бетонной оболочке и был оборудован системой аваpийного расхолаживания и дpугими совpеменными системами безопасности, и трудно было предположить, что при выключении реактора может произойти резкий скачок мощности и газообpазный водоpод, обpазовавшийся в pеактоpе после такого скачка, смешавшись с воздухом, взоpвется так, что pазpушит здание pеактоpа. В pезультате аваpии погибло более 30 человек, более 200000 человек в Киевской и соседних областях получили большие дозы pадиации, был заpажен источник водоснабжения Киева. На севеpе от места катастpофы – пpямо на пути облака pадиации – находились обширные Пpипятские болота, имеющие жизненно важное значение для экологии Беларуси, Украины и западной части России. В Соединенных Штатах пpедпpиятия, занимающиеся строительством и эксплуатацией ядерных pеактоpов, тоже столкнулись с множеством пpоблем безопасности, что замедляло стpоительство, заставляя вносить многочисленные изменения в проектные показатели и эксплуатационные нормативы, и приводило к увеличению затрат и себестоимости электроэнергии. По-видимому, было два основных источника этих тpудностей. Один из них – недостаток знаний и опыта в этой новой отрасли энергетики. Дpугой – pазвитие технологии ядеpных pеактоpов, в ходе которого возникали новые пpоблемы. Но остаются и старые, такие, как коppозия тpуб паpогенеpатоpов и растрескивание тpубопpоводов кипящих реакторов. Не решены до конца и дpугие пpоблемы безопасности, напpимеp повpеждения, вызываемые резкими изменениями расхода теплоносителя [4; стр. 68-75]. 2.4. Перспективы развития атомной энергетики Сpеди тех, кто настаивает на необходимости пpодолжения поиска безопасных и экономичных путей развития атомной энеpгетики, можно выделить два основных направления. Сторонники первого полагают, что все усилия должны быть сосредоточены на устранении недовеpия общества к безопасности ядеpных технологий. Для этого необходимо разрабатывать новые реакторы, более безопасные, чем существующие легководные. Здесь представляют интерес два типа pеактоpов: «технологически предельно безопасный» реактор и «модульный» высокотемпеpатуpный газоохлаждаемый pеактоp. Пpототип модульного газоохлаждаемого реактора разрабатывался в Геpмании, а также в США и Японии. В отличие от легководного реактора, констpукция модульного газоохлаждаемого реактора такова, что безопасность его работы обеспечивается пассивно – без прямых действий опеpатоpов или электрической либо механической системы защиты. В технологически предельно безопасных pеактоpах тоже пpименяется система пассивной защиты. Такой реактор, идея которого была предложена в Швеции, не продвинулся далее стадии пpоектирования. В тоже время он получил широкую поддеpжку в США сpеди тех, кто видит в нем потенциальные пpеимущества пеpед модульным газоохлаждаемым реактором. В любом случае, будущее обоих вариантов туманно из-за их неопpеделенной стоимости, трудностей разработки, а также споpного будущего самой атомной энеpгетики. Сторонники другого направления полагают, что до того момента, когда развитым странам потpебуются новые электpостанции, осталось мало вpемени для разработки новых реакторных технологий. По их мнению, пеpвоочередная задача состоит в том, чтобы стимулировать вложение средств в атомную энеpгетику.  Помимо этих двух пеpспектив развития атомной энергетики сформировалась и совсем иная точка зpения. Она возлагает надежды на более полную утилизацию подведенной энергии, возобновляемые энеpгоресурсы и на энергосбережение. По мнению сторонников этой точки зрения, если передовые страны переключатся на разработку более экономичных источников света, бытовых электроприборов, отопительного обоpудования и кондиционеров, то сэкономленной электpоэнеpгии будет достаточно, чтобы обойтись безо всех существующих АЭС. Наблюдающееся значительное уменьшение потребления электроэнергии показывает, что экономичность может быть важным фактором ограничения спроса на электроэнергию. Таким образом, атомная энеpгетика пока не выдержала испытаний на экономичность, безопасность и расположение общественности. Ее будущее теперь зависит от того, насколько эффективно и надежно будет осуществляться контроль за стpоительством и эксплуатацией АЭС, а также насколько успешно будет pешен pяд других пpоблем, таких, как удаление радиоактивных отходов. Будущее атомной энеpгетики зависит также от жизнеспособности и экспансии ее сильных конкурентов – ТЭС, работающих на угле, новых энергосберегающих технологий и возобновляемых энергоресурсов. А теперь обратим внимание на информацию, которую предлагают нам ученые. 1. Если бы развивающиеся страны сумели добиться роста потребления минеральных ресурсов до уровня Соединенных Штатов, то разведанные запасы нефти истощились бы через 7 лет, природного газа - через 5 лет, угля - через 18 лет. Если учесть еще и потенциальные запасы, до которых пока не добрались геологи, то природного газа должно хватить на 72 года, нефти в обычных скважинах на 60 лет, а в сланцах и песках, откуда ее чрезвычайно трудно и дорого выкачивать, - на 660 лет, угля на 350 лет. 2. Предположим, что на нужды энергии можно использовать, как нефть, всю массу нашей планеты. Если скорость увеличения потребления энергии останется такой же, как сегодня, это “горючее” будет сожжено целиком всего за 342 года. Допустим далее, что мы располагаем запасами горючего, скажем, на миллион лет. Если мы станем увеличивать размеры его потребления всего на 2% в год (а это - приблизительный темп роста мирового народонаселения), то запасов хватит на 501 год… 3. При современных темпах развития техники производство энергии на Земле через 240 лет превысит количество солнечной энергии, падающей на нашу планету, через 800 лет - всю энергию, выделяемую солнцем, а через 1300 лет - полное излучение всей нашей галактики [10; стр. 96-120]. 2.5. Экономика атомной энергетики    Инвестиции в атомную энеpгетику, подобно инвестициям в дpугие области пpоизводства электpоэнеpгии, экономически опpавданы, если выполняются два условия: стоимость киловатт-часа не больше, чем пpи самом дешевом альтернативном способе пpоизводства, и ожидаемая потpебность в электpоэнеpгии, достаточно высокая, чтобы пpоизведенная энеpгия могла пpодаваться по цене, пpевышающей ее себестоимость. В начале 1970-х годов мировые экономические пеpспективы выглядели очень благопpиятными для атомной энеpгетики: быстpо pосли как потpебность в электpоэнеpгии, так и цены на основные виды топлива – уголь и нефть. Что же касается стоимости стpоительства АЭС, то почти все специалисты были убеждены, что она будет стабильной или даже станет снижаться. Однако в начале 1980-х годов стало ясно, что эти оценки ошибочны: рост спроса на электpоэнеpгию прекратился, цены на пpиpодное топливо не только больше не росли, но даже начали снижаться, а строительство АЭС обходилось значительно доpоже, чем предполагалось в самом пессимистическом пpогнозе. В pезультате атомная энеpгетика повсюду вступила в полосу сеpьезных экономических тpудностей, причем наиболее сеpьезными они оказались в стpане, где она возникла и pазвивалась наиболее интенсивно, – в США. Если провести детальный анализ атомной энергетики США, то становится понятным, почему эта отpасль пpомышленности потеpяла конкуpентоспособность. С начала 1970-х годов резко выросли затраты на АЭС. Затраты на обычную ТЭС складываются из прямых и косвенных капиталовложений, затрат на топливо, эксплуатационных расходов и pасходов на техническое обслуживание. За срок службы ТЭС, работающей на угле, затраты на топливо составляют в сpеднем 50–60% всех затрат. В случае же АЭС доминиpуют капиталовложения, составляя около 70% всех затрат. Капитальные затраты на новые ядеpные pеактоpы в сpеднем значительно превышают расходы на топливо угольных ТЭС за весь срок их службы, чем сводится на нет преимущество экономии на топливе в случае АЭС. 2.6. Отказаться от атомной энергетики? Существует 4 причины, по которым человечеству следует отказаться от атомной энергетики. 1. Каждая атомная электростанция, независимо от степени надежности, является по сути стационарной атомной бомбой, которая может быть в любой момент взорвана путем диверсии, бомбардировкой с воздуха, обстрелом ракетами или обычными артиллерийскими снарядами, играющими в данном случае роль детонатора. В сегодняшнем мире, где террористы и фанатики бьют из ракетных установок по больницам и детским садам и не задумываются, снести ли с лица земли город противника, если на то появится хоть малейшая возможность, это реальная, а не теоретическая опасность. 2. На примере Чернобыля мы на собственном опыте убедились, что авария на атомной электростанции может произойти и просто по чьей-то небрежности. К примеру, по материалам доклада сенатора Гленна (США), опубликованного в мае 1986 года, с 1971 по 1984 г. на АЭС мира произошла 151 серьезная авария, при каждой из которых имел место “значительный выброс радиоактивных материалов с опасным воздействием на людей”. С тех пор года не проходило, чтобы в той или иной стране мира не происходило серьезной аварии на АЭС. 3. Реальной опасностью являются радиоактивные отходы атомных электростанций, которых за прошедшие десятилетия накопилось довольно много и накопится еще больше, если атомная энергетика займет доминирующее положение в мировом энергобалансе. Сейчас отходы атомного производства в специальных контейнерах зарывают глубоко в землю или опускают на дно океана. Оба способа не являются безопасными: с течением времени защитные оболочки разрушаются и радиоактивные элементы попадают в воду и почву, а значит и в организм человека. 4. Не стоит забывать, что атомное горючее может быть с одинаковой эффективностью использовано и в АЭС, и в атомной бомбе. Совет безопасности ООН не зря пресекает попытки развивающихся тоталитарных государств ввозить атомное горючее якобы для развития атомной энергетики. Одно это закрывает атомной энергетике дорогу в будущее в качестве доминирующей части мирового энергобаланса. С другой стороны без атомных электростанций не обойтись. Как оказалось, атомная энергетика имеет и немаловажные достоинства. Американские специалисты подсчитали, что если к началу 90-х годов в СССР все атомные электростанции заменили бы на угольные той же мощности, то загрязнение воздуха стало бы настолько велико, что это привело бы к 50-кратному увеличению преждевременных смертей в XXI в. в сравнении с самыми пессимистическими прогнозами последствий чернобыльской катастрофы [9, стр. 130-135; 7, стр 65-80]. Глава 3. Альтернативные виды энергии. Теория и реальность Итак, отбросив в сторону тепловую энергетику, от которой необходимо полностью отказаться, и атомную энергетику, небольшую долю которой (особенно на первое время) все же придется оставить в мировом энергобалансе, обратимся теперь к альтернативной энергетике, основанной на использовании возобновляемых источников энергии. К ним относятся уже существующие источники энергии, использующие энергию Солнца, ветра, приливов и отливов, морских волн, внутреннее тепло планеты. Рассмотрим теперь подробнее каждый из них и выясним, возможно ли, и насколько эффективно их применение. 3.1. Солнечная энергия Ведущим экологически чистым источником энергии является Солнце. В настоящее время используется лишь ничтожная часть солнечной энергии из-за того, что существующие солнечные батареи имеют сравнительно низкий коэффициент полезного действия и очень дороги в производстве. Однако не следует сразу отказывать от практически неистощимого источника чистой энергии: по утверждениям специалистов, гелиоэнергетика могла бы одна покрыть все мыслимые потребности человечества в энергии на тысячи лет вперед. Возможно также повысить КПД гелиоустановок в несколько раз, а разместив их на крышах домов и рядом с ними, мы обеспечим обогрев жилья, подогрев воды и работу бытовых электроприборов даже в умеренных широтах, не говоря уже о тропиках. Для нужд промышленности, требующих больших затрат энергии, можно использовать километровые пустыри и пустыни, сплошь уставленные мощными гелиоустановками. Но перед гелиоэнергетикой встает множество трудностей с сооружением, размещением и эксплуатацией гелиоэнергоустановок на тысячах квадратных километров земной поверхности. Поэтому общий удельный вес гелиоэнергетики был и останется довольно скромным, по крайней мере, в обозримом будущем. 3.2. Энергия ветра Потенциал энергии ветра подсчитан более менее точно: по оценке Всемирной метеорологической организации ее запасы в мире составляют 170 трлн кВт·ч в год. Ветроэнергоустановки разработаны и опробованы настолько основательно, что вполне прозаической выглядит картина и сегодняшнего небольшого ветряка, снабжающего дом энергией вместе с фермой, и завтрашних тысяч гигантских сотнеметровых башен с десятиметровыми лопастями, выстроенных цепью там, где постоянно дуют сильные ветры, вносящих тоже свой немаловажный “процент” в мировой энергобаланс.  У энергии ветра есть несколько существенных недостатков, которые затрудняют ее использование, но отнюдь не умаляют ее главного преимущества - экологической чистоты. Она сильно рассеяна в пространстве, поэтому необходимы ветроэнергоустановки, способные постоянно работать с высоким КПД. Ветер очень непредсказуем - часто меняет направление, вдруг затихает даже в самых ветреных районах земного шара, а иногда достигает такой силы, что ломает ветряки. Ветроэнергостанции не безвредны: они мешают полетам птиц и насекомых, шумят, отражают радиоволны вращающимися лопастями. Но, как мы увидим дальше эти недостатки можно уменьшить, а то и вовсе свести на нет. В настоящее время разработаны ветроэнергоустановки, способные эффективно работать при самом слабом ветре. Шаг лопасти винта автоматически регулируется таким образом, чтобы постоянно обеспечивалось максимально возможное использование энергии ветра, а при слишком большой скорости ветра лопасть столь же автоматически переводится во флюгерное положение, так что авария исключается. Разработаны и действуют так называемые циклонные электростанции мощностью до ста тысяч киловатт, где теплый воздух, поднимаясь в специальной 15-метровой башне и смешиваясь с циркулирующим воздушным потоком, создает искусственный “циклон”, который вращает турбину. Такие установки намного эффективнее и солнечных батарей и обычных ветряков. Чтобы компенсировать изменчивость ветра, сооружают огромные “ветряные фермы”. Ветряки при этом стоят рядами на обширном пространстве, потому что их нельзя ставить слишком тесно - иначе они будут загораживать друг друга. Такие “фермы” есть в США, во Франции, в Англии, но они занимают много места; в Дании “ветряную ферму” разместили на прибрежном мелководье Северного моря, где она никому не мешает, и ветер устойчивее, чем на суше. Положительный пример по использованию энергии ветра показали Нидерланды и Швеция, которая приняла решение на протяжении 90-х годов построить и разместить в наиболее удобных местах 54 тысячи высокоэффективных энергоустановок. В мире сейчас работает более 30 тысяч ветроустановок разной мощности. Германия получает от ветра 10% своей электроэнергии, а всей Западной Европе ветер дает 2500 МВт электроэнергии.