Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
История электроники.doc
Скачиваний:
17
Добавлен:
11.07.2019
Размер:
1.11 Mб
Скачать

Создание эдектродинамики

Этап развития учения об электричестве и магнетизме, охватывающий XVIII век, заключался в исследовании законов равновесия электрических зарядов и магнитов. Были установлены основные законы взаимодействия электрических зарядов и магнитов, а затем (в первой половине XIX в.) создан соответствующий математический аппарат. В конце XVIII века начали изучать электрический ток, его действия. Возникает и развивается новая область учения об электричестве и магнетизме, названная одним из ее основоположников, Ампером, электродинамикой. Электродинамика в первой половине XIX века, так же как и электростатика, основывалась на принципе дальнодействия.

Начало развития электродинамики связано с открытием первого источника постоянного тока, которое обязано исследованиям итальянского профессора медицины Луиджи Гальвани, относящимся еще к концу XVIII века. Занимаясь физиологией и медициной, он, как и многие его современники, интересовался ролью электричества в процессах, происходящих в живом организме. Проводя исследования в этом направлении, он открыл так называемое гальваническое электричество.

Животное электричество

После первых же случаев поражения электрическим разрядом возникли, обоснованные предположения и надежды, что новое вещество окажется способным облегчать или вылечивать болезни страждущего человечества. Открытие лейденской банки подтвердило предположения и еще больше подкрепило надежду. А когда Франклину наконец удалось извлечь электричество из облаков, стало казаться, «что вся природа стала электрической». А если вся природа электрическая, то и жизнь человека, как физическая, так и духовная, должна определяться течением по жилам и по мускулам этого таинственного вещества. Таким образом возникло представление о животном электричестве, главном регуляторе жизни животных вообще и людей в частности.

В 1773 году появился мемуар Джона Уолша, в котором доказывается электрическая природа рыбы, называемой с тех пор электрическим скатом. Вильгельм Гравезанд и Мушенбрук также выдвигали предположение о его электрической природе, но не подтвердили его никакими опытами. Некоторые опыты в этом направлении проделал Байен (1745-1798), но они прошли незамеченными. Таким образом, мемуар Уолша воспринимался как открытие и произвел сильное впечатление. В нем экспериментально показано, что явление удара от электрического ската можно воспроизвести с помощью искусственного электричества.

За мемуаром Уолша последовало много других работ, посвященных физическому и анатомическому исследованию электрического ската; среди них выделяется мемуар Кавендиша (1776 г.), в котором помимо некоторых данных по интересовавшему его вопросу об измерении электрического сопротивления описан «искусственный электрический скат», где электричество поставляется батареей лейденских банок. Это приспособление было погружено в подсоленную воду той же степени солености, что и море. При этом наблюдались те же эффекты, что и при действии ската.

В период максимального обилия публикаций, последовавшего за работой Уолша, физики разделились на два лагеря: одни считали животное электричество свойственным лишь «электрическим рыбам», другие же приписывали его вообще всем животным. Физиологи того времени в свою очередь придумали себе без всяких экспериментальных оснований «животные эссенции», подобные электрическому флюиду, но в остальном не определенные. Эссенции, протекая по нервам, ответственны за перенос ощущений к мозгу и произвольное сокращение мышц в результате волевых импульсов.

На фоне этого океана необоснованных гипотез, путаных идей, ошибочных аналогий, смутных предчувствий начались исследования Луиджи Гальвани, родившегося в Болонье 9 сентября 1737 году, и умершего там же 4 декабря 1798 года.

Занимаясь физиологией и медициной, он, как и многие его современники, интересовался ролью электричества в процессах, происходящих в живом организме. Проводя исследования в этом направлении, он открыл так называемое гальваническое электричество. Гальвани помещал лягушку на железную пластинку; касаясь медной проволокой, пропущенной через спинной мозг лягушки, этой пластинки, он наблюдал судорожные сокращения мышц.

 

 

 

 

 

 

 

 

К объяснению открытого явления Гальвани подошел прежде всего как врач. Он считал, что открыл «животное» электричество, вырабатываемое организмом лягушки и являющееся одновременно «нервным флюидом». При замыкании нерва и мускула лягушки проводником образуется замкнутая цепь, «животное» электричество свободно протекает по этой цепи и вызывает сокращение мышцы, играющих роль регистратора.

 

 

 Позже, в работе 1795 году, опубликованной в 1797 году и написанной в виде письма Спаланцани, Гальвани изложил более полно теорию животного электричества: это электричество накапливается в неравновесном состоянии в мышечных тканях; через нерв, соприкасающийся с мышцей, оно переходит в металлическую дугу, а через нее вновь возвращается в мышцу. Иными словами, мышцы и нервы, согласно Гальвани, образуют как бы две обкладки лейденской банки.

Открытие Гальвани и его теория «животного» электричества, опубликованная в 1791 года, вызвали большой интерес. Некоторые ученые повторили опыты Гальвани. Среди них был и итальянский физик Алессандро Вольта, который не только подтвердил результаты опытов Гальвани, но и сделал новый шаг в изучении открытого явления.

Вольта, как физика, прежде всего, интересовала физическая сторона явления. На основании ряда исследований он пришел к иному выводу, чем Гальвани. Вольта заметил, что сила сокращения мышц лягушки зависит от того, какие употребляются металлы, и что однородные металлы почти не оказывают действия. Отсюда он заключил, что источником электричества является не организм лягушки: оно возникает в результате соприкосновения разнородных металлов, лягушка же играет роль регистрирующего прибора.

Он выдвинул гипотезу, согласно которой металлические тела обладают свойством действовать на заключенный в них электрический флюид, отталкивая или притягивая его. Поскольку каждый металл обладает определенной силой действия на электрический флюид, то соприкосновение различных металлов приводит его в движение, возникает электрический ток, который и действует на нервы и мышцы лягушки. Высказав эту гипотезу, Вольта предложил изменить название «животное» электричество на «металлическое» электричество.

В ольта, обосновывая гипотезу «металлического электричества», шел по пути исключения из опыта живого организма. Он показал, что простое соприкосновение разнородных металлов приводит к их электризации. Это было открытие контактной разности потенциалов у металлов (данный термин появился позже). Вольта расположил металлы в ряд, причем каждый стоящий справа металл при соприкосновении со стоящим слева электризовался отрицательно. При этом, как он полагал, «способность приводить в движение электрический флюид» для металла, расположенного не рядом, равна сумме «способностей» всех промежуточных пар металлов. Подобные исследования привели Вольта к изобретению первого гальванического элемента, получившего название вольтова столба. Об этом изобретении он сообщил в 1800 году.