Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
материалка 2 курс 1 сем.вопросы ответы0.docx
Скачиваний:
5
Добавлен:
22.04.2019
Размер:
480.59 Кб
Скачать

27 Вопрос Дефекты закалки стали и пути их исправления

 

Вид дефекта

Причина

Способ исправления

Недостаточная твердость

1.Нагрев доэвтектоидных сталей ниже А3.

В структуре остается феррит

2.Нагрев заэвтектоидных сталей выше Асм

В структуре больше Аост.

и отсутствует цементит

3.Недостаточная скорость охлаждения

В структуре присутствует тростит

 

 

Повторная закалка

 

 

 

 

 

Повторная закалка

 

Сменить охладитель или способ закалки

Увеличить скорость

охлаждения

 

Трещины

Чрезмерно быстрое охлаждение в мартенситном интервале

Сменить охладитель или способ закалки. Уменьшить скорость охлаждения

Повышенная хрупкость

Перегрев доэвтектоидных сталей, сильный рост зерна.

Наличие в исходной структуре заэвтектоидной стали сетки цементита

Повторная закалка

 

 

Перед закалкой провести нормализацию

Сильное обезуглераживание и окисление поверхности

Завышена продолжительность выдержки при нагреве

 

Уменьшить выдержку до требуемой

Отпуск — нагрев закаленной стали до температуры ниже Асу, выдержка при этой температуре и последующее охлаждение. Проводится с целью устранения внутренних напряжений и повышения пластичности.

Рассмотрим превращения, происходящие при нагреве в закаленной на мартенсит стали.

Мартенсит, имеющий после закалки тетрагональную кристаллическую решетку, при нагреве выше 80° С начинает превращаться в кубический. Как всякий пересыщенный раствор, мартенсит неустойчив. Он распадается при комнатной температуре, но скорость распада чрезвычайно мала из-за незначительной тепловой подвижности атомов. При температуре выше 80° С подвижность атомов уже достаточна для того, чтобы углерод частично перешел из пересыщенного раствора в пластинки карбида толщиной всего в несколько атомных слоев за относительно небольшой промежуток времени. Это превращение происходит в интервале 80—170° С. При нем происходит уменьшение искажения кристаллической ре-щетки мартенсита. Внутренние напряжения снижаются, уменьшается удельный объем мартенсита, размеры детали немного сокращаются. Твердость и прочность остаются почти неизменными, а пластические свойс^а несколько повышаются.

Отпуск в интервале 150—200° С называется низким отпуском. Низкому отпуску подвергают режущий инструмент и детали, ра-ботающи&-ла_,износ, от которых требуется высокая твердость. В результате низкого отпуска получается отпущенный кубический мартенсит.

При нагреве закаленной стали от 200 до 300° С остаточный аустенит превращается в отпущенный мартенсит: это сопровождается некоторым увеличением размеров детали. К концу этого температурного интервала а-твердый раствор еще несколько пересыщен углеродом, внутренние напряжения практически устранены. Нагрев выше 300° С вызывает дальнейшее выделение углерода из мартенсита, происходит обособление карбидов с образованием очень мелких округлых включений цементита. При температурах выше 400° С карбиды укрупняются.

Отпуск стали — диффузионный процесс. Превращение однородного мартенсита в карбидо-ферритную смесь с резким различием химического состава происходит в течение определенного времени. Нагреть сталь до заданной температуры отпуска недостаточно. Необходимо еще выдержать ее при этой температуре для завершения диффузионных процессов. Время выдержки при от-пуске обычно колеблется от 30 мин до нескольких часов в зависимости от состава стали и размеров детали.

При распаде мартенсита получаются структуры троостита, сорбита и перлита. Они отличаются от тех же структур, получающихся в процессе распада аустенита, размером частиц и механическими свойствами. Форма цементитных включений, образующихся при распаде мартенсита, округлая, тогда как при распаде аустенита получаются пластинки цементита. Различная форма включений цементита обусловливает разные свойства. При одной и той же прочности сталь после отпуска получается более пластичной.

На рис. 85 показано, как изменяются механические свойства стали 45, закаленной с 840° С в масле, в процессе последующего °тпуска. С повышением температуры отпуска твердость, предел прочности и предел текучести монотонно снижаются, а относительное удлинение и ударная вязкость повышаются. Изменяя температуру отпуска, можно получать различные сочетания ме-1 ханических свойств.

Отпуск в интервале 350—500° С называется средним отпуском -Он обеспечивает высокие предел упругости, предел прочности' предел усталости и ударную вязкость. После среднего отпуска получается структура троостита отпуска.

Среднему отпуску подвергают, например, пружины подвесок трубопроводов, рессоры.

Высокому отпуску — многие детали машин и элементы теплосилового оборудования. В частности, закалке в масле с последующим высоким отпуском подвергают толстостенные паропроводные трубы из некоторых легированных сталей. Углеродистую закаленную сталь при высоком отпуске нагревают до 500—650 С. При jj этом получают структуру троостита или сорбита отпуска.

Основное назначение высокого отпуска — получение высоких jj пластических свойств и ударной вязкости при остаточной прочЯ ности и твердости стали. Комплекс механических свойств у сталД после закалки с высоким отпуском получается выше, чем после | нормализации или отжига. Двойная термическая обработкам состоящая из закалки и среднего или высокого отпуска, пазы- I вается улучшением. Такая термическая обработка иногда необ- | ходима для шпилек и шпинделей теплосиловой арматуры.

Свойства углеродистой стали после закалки и отпуска опре- I деляются температурой и продолжительностью нагрева при о«И пуске. Они не зависят от скорости охлаждения после отпускал

Старение металла — выделение мелкодисперсных частиц вто*| ричных фаз в сплавах с ограниченной растворимостью. Избыточные компоненты выделяются в виде хопчайших субмикроскспических включений по телу или границам зерен. Эти процессы вызывают повышение твердости и прочности, так как выделения вторичных фаз затрудняют перемещение дислокаций. В большинстве случаев старение сопровождается резким снижением пластичности и ударной вязкости. Для котельных сталей это совершенно недопустимо.

Котельный стальной лист и труба из малоуглеродистой стали проявляют склонность к старению в наклепанном состоянии (после вальцовки, гибки или других операций холодной пластической деформации). При вылеживании при комнатной температуре повышается твердость и прочность, а пластичность и ударная вязкость снижаются. Этот процесс длится многие месяцы и называется естественным старением. Нагрев наклепанного металла до 250—300° С резко ускоряет процесс. Ударная вязкость при этом может снизиться до величины, составляющей 5—10% от исходной. Особенно подвержены старению стали, деформированные на 3—10%. Охрупчивание металла может привести к авариям, особенно в тех случаях, когда деталь воспринимает ударные нагрузки. Старение — одна из причин образования кольцевых трещин в трубах из малоуглеродистой стали в местах развальцовки. Причина старения — образование при быстром охлаждении пересыщенного раствора углерода и азота в феррите. При температуре 727° С в феррите растворяется 0,025% С, а при комнатной— всего 0,006%). Пластическая деформация делает пересыщенный раствор еще менее стабильным. В результате его распада образуются весьма мелкодисперсные карбиды и нитриды железа. Нагрев при 250—300° С ускоряет процесс старения, так .как диффузионная подвижность при этом повышается. При более высоких температурах одновременно с выпадением частиц происходит их укрупнение. Крупных частиц получается меньше, так как объем каждой из них существенно больше. Они относительно слабо влияют на свойства стали, и старение не наблюдается. Наиболее склонны к старению малоуглеродистые стали, особенно кипящие (раскисленные только марганцем). Полуспокойная и спокойная стали менее чувствительны к старению. Особенно эффективно действует раскисление алюминием. Аналогично влияют молибден и ванадий. С повышением содержания углерода склонность стали к старению снижается.